| 研究生: |
陳俊宏 Chen, Chun-Hong |
|---|---|
| 論文名稱: |
應用介電泳和液體介電泳產生奈升級液珠之探討 Creation of Nano-liter Droplets using DEP and LDEP for Biomedical Applications |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 液體介電泳 、介電泳 |
| 外文關鍵詞: | liquid dielectrophoresis (LDEP), dielectrophoresis (DEP) |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
介電泳是利用不帶正負電荷的微粒子在靜止的液體中,受到不均勻電場的誘導,在粒子本身產生了極化,而在液體內漂移的現象。而液體介電泳則是液體受到不均勻電場的影響,往高電場密度的方向移動。本研究包含介電泳和液體介電泳的實驗,在介電泳實驗中,細胞能在電壓10Vpp、頻率2 MHz的情況下聚集在特定的區域。在共平面液體介電泳電極的實驗中,由於液體介電泳的作用,在半圓型電極上會產生產生1奈升的液珠,但由於焦耳熱和單板的緣故,液珠會快速的蒸發。在不同寬度的雙板電極測試實驗中,我們發現電極寬度越大所需的驅動電壓越低。最後,在雙板電極元件中,藉由液體介電泳的效應下在液體介電泳電極可以在連續流中產生奈升級的液珠。
The phenomenology of Dielectrophoresis(DEP) is a neutral particle in the static liquid with non-uniform applied electric field and the electrically polarized particle moves in the liquid. The phenomenology of liquid DEP is liquid in a non-uniform electric field tends to flow in regions of high electric field intensity. This study consists of the LDEP and DEP experiments. In the DEP experiment, cells gather on specific region under 10Vpp voltage and frequency at 2M. In co-planar LDEP electrode experiment, the 1μl droplet is created on semi-circle electrode due to the LDEP effect. However, the droplet evaporates quickly because of the joule heat and single plate. In different width testing of LDEP electrode experiment, the lowest actuation voltage of wider LDEP electrode is lower than the lowest actuation voltage of narrower LDEP electrode. Finally, the nano-liter droplet creation in continuous liquid is successfully on LDEP devices based on the LDEP effect.
1. Shih-Kang Fan, “Digital Microfluidics Cross-Reference EWOD Actuation: Principle, Device and System”, Unversity of California Los Angeles, Degree doctor of philosophy, 2003.
2. Shih-Chyn Lin, “Study of WEOD-based Actuation for Digital Microfluidic System”, National Central University, Degree of master, June 2004.
3. R Ahmed and T B Jones, “Optimized liquid DEP droplet dispensing”, Joural of micromechanics and microengineering, 17, 1052–1058,2007.
4. Jones T B, Gunji M, Washizu M and Feldman M J, “Dielectrophoretic liquid actuation and nanodroplet formation” J. Appl. Phys. 89 1441–8, 2001.
5. Herbert A. Pohl, “Dielectrophoresis”, Cambridge Univ. Press, Cambridge, 1978.
6. Herbert A. Pohl, “Some Effects of Nonuniform Fields on Dielectrics”, Journal of Applied Physics, 29 1182-1188, 1958.
7. Adam Rosenthal*y and Joel Voldman*, “Dielectrophoretic Traps for Single-Particle Patterning”, Biophysical Journal, 88, 2193–2205, 2005
8. HA Pohl, “The Motion and Precipitation of Suspensoids in Divergent Electric Fields,” J. Appl. Phys. 22, 869 ,1951.
9. T. B. Jones and J. R. Melcher, “Dynamics of electromechanical flow structures”, Phys. Fluids 16, 393 ,1973.
10. T. B. Jones, J. Appl. Phys. 45, 1487,1974.
11. T.B. Jones, “Liquid dielectrophoresis on the microscale”, Journal of Electrostatics, 51-52 ,290-299, 2001.
12. Lord Rayleigh, “The Theory of Sound” (New York: Dover), 2, 359, 1945.
13. Yen-Chen Lin, Yu-Chi Chang, Kai-Cheng Chuang, and Shih-Kang Fan, “Nanoliter droplet creation by EWOD and LDEP”, The 10th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS2006) November 5-9, 2006.
14. H. Pellat, C.R. Seances Acad. Sci. (Paris) 119 (1894) 675.
15. J.R. Melcher, “A Tutorial on Induced Electrohydrodynamic Forces”, MIT, Cambridge, MA, 1968.
16. L.D. Landau, E.M. Lifshitz, in: J.B. Sykes, J.S. Bell (Translators), Electrodynamics of Continuous Media, Pergamon, Oxford, 1960, pp. 64-69.
17. C.E. Rosenkilde, Proc. R. Soc. (London) A312 473,1969.