簡易檢索 / 詳目顯示

研究生: 廖偉志
Liao, Wei-Chih
論文名稱: 新型高轉換比雙向DC-DC轉換器之研製
Study and Implementation of a Novel Bidirectional DC-DC Converter with High Conversion Ratio
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 雙向轉換器高轉換比耦合電感
外文關鍵詞: bidirectional converter, high conversion ratio, coupled-inductor
相關次數: 點閱:152下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一新型高轉換比雙向DC-DC轉換器,電路架構使用耦合電感技術,具有高電壓轉換比之功能。此雙向轉換器操作於升壓模式時,其架構為升壓型轉換器與具倍壓電路之返馳式轉換器疊接,故具有高電壓轉換比。此外,於升壓模式時轉換器具有電壓箝位電路,可降低開關上之電壓應力並回收漏感能量傳送至輸出。當電路操作於降壓模式時,電路為非對稱半橋返馳式轉換器與降壓型轉換器經耦合電感組合而成,漏感能量藉由箝位電路回收,且各開關可達到零電壓導通,降低開關上之切換損失。本文首先針對所提出之轉換器電路,分析其動作原理與穩態特性,並實作一轉換電壓為24 V/400 V,功率為500 W之雛型電路,以驗證本論文中所提轉換器之可行性。

    A novel bidirectional DC-DC converter with high conversion ratio is proposed in this thesis. The proposed converter uses the coupled-inductor to achieve high voltage conversion ratio. In the boost mode, the proposed converter functions as a boost and flyback integrated converter with voltage doubler to increase the voltage gain. The switch voltage stress is reduced by clamping circuit and also the leakage-inductor energy is recycled. In the buck mode, the converter functions as an asymmetrical half-bridge flyback and buck integrated converter. The leakage-inductor energy is recycled by clamping circuit and all of the switches are turned on with zero-voltage-switching. The operating principles and steady-state analysis of the proposed converter are discussed. Finally, a laboratory prototype circuit with 24 V/400 V and output power 500 W is implemented to verify the feasibility of the proposed converter.

    目  錄 摘 要 I 誌 謝 III 目 錄 IV 圖 目 錄 VII 表 目 錄 X 第一章 緒論 1 1.1研究背景與動機 1 1.2論文內容大綱 3 第二章 高轉換比雙向DC-DC轉換器簡介 4 2.1隔離型高轉換比雙向DC-DC轉換器 5 2.1.1返馳式雙向DC-DC轉換器 5 2.1.2半橋/推挽雙向DC-DC轉換器 6 2.1.3全橋/推挽雙向DC-DC轉換器 7 2.1.4順向-返馳混合式雙向DC-DC轉換器 9 2.2非隔離型高轉換比雙向DC-DC轉換器 11 2.2.1單級串接式雙向DC-DC轉換器 11 2.2.2耦合電感雙向DC-DC轉換器 12 2.2.3耦合電感串接式雙向DC-DC轉換器 14 2.2.4耦合電感疊接式雙向DC-DC轉換器 15 第三章 新型高轉換比雙向DC-DC轉換器 17 3.1主電路架構 17 3.2升壓模式 19 3.2.1升壓模式電路分析 19 3.2.2升壓模式電壓轉換比 26 3.2.3升壓模式邊界導通條件 27 3.3降壓模式 30 3.3.1 降壓模式電路分析 30 3.3.2 降壓模式電壓轉換比 38 3.3.3 降壓模式邊界導通條件 39 3.4電路拓撲延伸 41 第四章 系統設計與硬體實驗結果分析與討論 43 4.1 系統架構與系統規格 43 4.2 電路元件參數設計 44 4.2.1 耦合電感參數設計 44 4.2.2 電容參數設計 45 4.2.3 開關元件選用 46 4.3 實驗結果與討論 47 4.3.1 升壓模式實驗結果 50 4.3.2 降壓模式實驗結果 55 第五章 結論與未來研究方向 60 5.1結論 60 5.2未來研究方向 61 參考文獻 62 圖 目 錄 圖1.1 混合供電系統架構圖 2 圖2.1 返馳式雙向DC-DC轉換器電路圖 6 圖2.2 半橋/推挽雙向DC-DC轉換器電路圖 7 圖2.3 全橋/推挽雙向DC-DC轉換器電路圖 8 圖2.4 順向-返馳混合式雙向DC-DC轉換器電路圖 10 圖2.5 單級串接式雙向DC-DC轉換器電路圖 12 圖2.6 耦合電感雙向DC-DC轉換器電路圖 13 圖2.7 主動箝位耦合電感雙向DC-DC轉換器電路圖 14 圖2.8 耦合電感串接式雙向DC-DC轉換器電路圖 15 圖2.9 耦合電感疊接式雙向DC-DC轉換器電路圖 16 圖3.1 新型高轉換比雙向DC-DC轉換器 17 圖3.2 升壓模式之等效電路圖 19 圖3.3 升壓模式主要波形圖 20 圖3.4 升壓模式之模式I之電流路徑圖 21 圖3.5 升壓模式之模式II之電流路徑圖 22 圖3.6 升壓模式之模式III之電流路徑圖 23 圖3.7 升壓模式之模式IV之電流路徑圖 24 圖3.8 升壓模式之模式V之電流路徑圖 25 圖3.9 升壓模式電壓增益曲線圖 27 圖3.10 升壓模式邊界曲線圖 29 圖3.11 降壓模式之等效電路圖 30 圖3.12 降壓模式主要波形圖 31 圖3.13 降壓模式之模式i之電流路徑圖 32 圖3.14 降壓模式之模式ii之電流路徑圖 33 圖3.15 降壓模式之模式iii之電流路徑圖 34 圖3.16 降壓模式之模式iv之電流路徑圖 35 圖3.17 降壓模式之模式v之電流路徑圖 36 圖3.18 降壓模式之模式vi之電流路徑圖 37 圖3.19 降壓模式電壓增益曲線圖 39 圖3.20 降壓模式邊界曲線圖 41 圖3.21 延伸電路拓撲圖 42 圖4.1 硬體系統架構圖 43 圖4.2 硬體電路圖 47 圖4.3 升壓模式輸出125 W之各開關量測波形 50 圖4.4 升壓模式輸出250 W之各開關量測波形 51 圖4.5 升壓模式輸出375 W之各開關量測波形 52 圖4.6 升壓模式輸出500 W之各開關量測波形 53 圖4.7 升壓模式轉換器效率曲線圖 54 圖4.8 降壓模式輸出125 W之各開關量測波形 55 圖4.9 降壓模式輸出250 W之各開關量測波形 56 圖4.10 降壓模式輸出375 W之各開關量測波形 57 圖4.11 降壓模式輸出500 W之各開關量測波形 58 圖4.12 降壓模式轉換器效率曲線圖 59 表 目 錄 表4.1 系統規格表 44 表4.2 電路元件規格表 48 表4.3 量測儀器型號表 49

    [1] M. K. Kazimierczuk, Pulse-width Modulated DC-DC Power Converters, John Wiley & Sons, Ltd., 2008.
    [2] C. C. Hua and C. C. Tu, “Design and implementation of power converters for wind generator,” Proc. IEEE ICIEA Conf., pp. 3372-3377, May 2009.
    [3] K. N. Hasan, M. E. Haque, M. Negnevitsky, and K. M. Muttaqi, “Control of energy storage interface with a bidirectional converter for photovoltaic systems,” Proc. IEEE AUPEC Conf., pp. 1-6, Dec. 2008.
    [4] W. T. Yan, L. S. Yang, C. M. Hong, T. J. Liang, J. F. Chen, and H. T. Yang, “Fuel cell and battery hybrid supplied power system,” Proc. IEEE ICEM Conf., pp. 2676-2680, Oct. 2008.
    [5] J. Y. Lee, Y. M. Chang, and F. Y. Liu, “A new UPS topology employing a PFC boost rectifier cascaded high-frequency tri-port converter,” IEEE Trans. on Industrial Electronics, vol. 46, no. 4, pp. 803-813, Aug. 1999.
    [6] B. S. Borowy and Z. M. Salameh, “Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system,” IEEE Trans. on Energy Conversion, vol. 11, pp. 367-375, Jun. 1996.
    [7] D. K. Choi, B. K. Lee, S. W. Choi, C. Y. Won, and D. W. Yoo, “A novel power conversion circuit for cost-effective battery-fuel cell hybrid systems,” Journal of Power Sources, vol.152, pp. 245-255, Dec. 2005.
    [8] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, Third Edition, John Wiley & Sons, Inc., 2003.
    [9] K. Ventatesan, “Current mode controlled bidirectional flyback converter,” Proc. IEEE PESC Conf., vol. 2, pp. 835-842, Jun. 1989.
    [10] G. Chen, Y. S. Lee, S. Y. Hui, D. Xu, and Y. Wang, “Actively clamped bidirectional flyback converter,” IEEE Trans. on Industrial Electronics, vol. 47, no. 4, pp. 770-779, Aug. 2000.
    [11] H. S. H. Chung, W. L. Cheung, and K. S. Tang, “A ZCS bidirectional flyback DC/DC converter,” IEEE Trans. on Power Electronics, vol. 19, no. 6, pp. 1426-1434, Nov. 2004.
    [12] M. Jain, M. Daniele, and P. K. Jain, “A bidirectional DC-DC converter topology for low power application,” IEEE Trans. on Power Electronics, vol. 15, no. 4, pp. 595-606, Jul. 2000.
    [13] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional DC-DC converter for fuel cell and battery application,” IEEE Trans. on Power Electronics, vol. 19, no. 1, pp. 54-65, Jan. 2004.
    [14] B. R. Lin, J. J. Chen, Y. E. Lee, and H. K. Chiang, “Analysis and implementation of a bidirectional ZVS DC-DC converter with active clamp,” Proc. IEEE ICIEA Conf., pp. 382-387, Jun. 2008.
    [15] H. Xiao and S. Xie, “A ZVS bidirectional DC-DC converter with phase-shift plus PWM control scheme,” IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 813-823, Mar. 2008.
    [16] B. R. Lin, C. L. Huang, and Y. E. Lee, “Asymmetrical pulse-width modulation bidirectional DC-DC converter,” IET Power Electronics, vol. 1, no. 3, pp. 336-347, 2008.
    [17] K. Yamamoto, E. Hiraki, T. Tanaka, M. Nakaoka, and T. Mishima, “Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems,” Proc. IEEE PESC Conf., pp. 1-5, Jun. 2006.
    [18] H. J. Chiu and L. W. Li, “A bidirectional DC-DC converter for fuel cell electric vehicle driving system,” IEEE Trans. on Power Electronics, vol. 21, no. 4, pp. 950-958, Jul. 2006.
    [19] L. A. Flores, O. Garcia, J. A. Oliver, and J. A. Cobos, “High-frequency bi-directional DC/DC converter using two inductor rectifier,” Proc. IEEE IECON Conf., pp. 2793-2798, Nov. 2006.
    [20] H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Transformer-coupled multiport ZVS bidirectional DC-DC converter with wide input range,” IEEE Trans. on Power Electronics, vol. 23, no. 2, pp. 771-781, Mar. 2008.
    [21] F. Zhang and Y. Yan, “Novel forward-flyback hybrid bidirectional DC-DC converter,” IEEE Trans. on Industrial Electronics, vol. 56, no. 5, pp. 1578-1584, May. 2009.
    [22] B. R. Lin, J. J. Chen, and F. Y. Hsieh, “Analysis and implementation of a bidirectional converter with high conversion ratio,” Proc. IEEE ICIT Conf., pp. 1-6, Apr. 2008.
    [23] P. Das, A. Mousavi, and G. Moschopoulos, “A novel ZVS-PWM DC-DC converter for bidirectional applications with steep conversion ratio,” Proc. IEEE ECCE Conf., pp. 2030-2036, Sep. 2009.
    [24] P. Das, B. Laan, S. A. Mousavi, and G. Moschopoulos, “A nonisolated bidirectional ZVS-PWM active clamped DC-DC converter,” IEEE Trans. on Power Electronics, vol. 24, no. 2, pp. 553-558, Feb. 2009.
    [25] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. on Power Electronics, vol. 22, no. 5, pp. 1986–1996, Sep. 2007.
    [26] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. on Power Electronics, vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
    [27] 洪啟銘,「高昇/降壓比雙向DC-DC轉換器之研製」,國立成功大學電機工程學系碩士論文,中華民國九十七年六月。
    [28] C. M. Hong, L. S. Yang, T. J. Liang, and J. F. Chen, “Novel bidirectional DC-DC converter with high step-up/down voltage gain,” Proc. IEEE ECCE Conf., pp. 60-66, Sep. 2009.
    [29] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [30] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Electric Power Applications, vol. 152, no. 2, pp. 217-225, Apr. 2005.
    [31] 曾國境,「新型高效率昇壓功率轉換器之分析與設計」,國立成功大學電機工程學系博士論文,中華民國九十三年十二月。
    [32] Q. Zhao and F. C. Lee, “High performance coupled-inductor DC-DC converters,” Proc. IEEE APEC Conf., vol. 1, pp. 109-113, Feb. 2003.
    [33] T. M. Chen and C. L. Chen, “Analysis and design of asymmetrical half bridge flyback converter,” IEE Electric Power Applications, vol. 149, no. 6, pp. 433-440, Nov. 2002.
    [34] G. Y. Jeong, “High efficiency asymmetrical half-bridge flyback converter using a new voltage-driven synchronous rectifier,” IET Power Electronics, vol. 3, no. 1, pp. 18-32, 2010.
    [35] B. Ray, “Single-cycle resonant bidirectional DC/DC power conversion,” Proc. IEEE APEC Conf., pp. 44-50, Mar. 1993.
    [36] I. D. Kim, S. H. Paeng, J. W. Ahn, E. C. Nho, and J. S. Ko, “New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter,” Proc. IEEE ISIE Conf., pp. 555-560, Jun. 2007.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE