簡易檢索 / 詳目顯示

研究生: 林聖章
Lin, Sheng-Jang
論文名稱: 數位像素感測器之像素電路對輸出訊號影響之探討
A DPS Study on the Effect upon Pixel Output Signals Induced by Pixel Circuits
指導教授: 魏嘉玲
Wei, Chia-Ling
王俊智
Wang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 65
中文關鍵詞: 數位像素感測器CMOS影像感測器
外文關鍵詞: digital pixel sensor, CMOS image sensor
相關次數: 點閱:150下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位像素感測器這個名詞在近五、六年來迅速崛起,其高速操作之優點符合未來像素陣列擴大且畫面更新率加快之趨勢,並且除了速度上之優勢,在雜訊上的消除以及動態範圍的提升也具有相當優異的表現,目前有越來越多的學者正朝這個方向研究。然而,龐大的像素電路卻也隱藏多問題值得探討。當像素電路變大時,光二極體之周邊電路運作可能會帶來更多的雜訊。因此,本論文探討像素電路操作時,對光二極體以及像素輸出之影響。
    論文中以台灣積體電路公司0.18μm 1P6M 1.8V混合訊號製程,實做了一個具測試像素電路雜訊能力之數位像素感測器,晶片面積1.253×1.253 mm²,像素陣列大小為60×60。像素中類比數位轉換器解析度為八位元,轉換時間為10.24μs,整個晶片可達到最快畫面更新率為12207 frames/s。除數位像素感測器之主電路架構外,在像素電路中額外加入主動式像素感測器來直接讀取光二極體之類比訊號,並交由後級之相關二次取樣電路消除固定圖像雜訊。晶片中可分為類比與數位兩部分,彼此可獨立運作,藉由在不同頻率下操作數位影像感測電路,可觀察類比輸出之結果,探討並分析像素電路操作時,對光二極體的影響與干擾情形。

    Digital pixel sensor(DPS) has grown quickly in recent five or six years. Beside the advantage of high speed operation, it shows excellent performance on noise elimination and dynamic range promotion. More and more scholars devote themselves to this area of DPS. However, the large pixel circuits of DPS also bring some problems. When more and more transistors are implemented into pixel circuit, the photodiodes may influence by the noise induced by transistors’ operation much more seriously. For this reason, my topic is studying on the effect induced by pixel circuits upon pixel outputs and photodiodes.
    A DPS chip with noise testing capability is fabricated in TSMC 0.18μm 1P6M 1.8V mixed-mode process. Chip occupies the area of 1.253×1.253 mm² and pixel array is 60×60. Pixel level ADC’s resolution and conversion time are individual 8-bits and 10.24μs. The maximum frame rate the DPS chip can achieve is 12207 frames/s. Except DPS circuits, the active pixel sensor(APS) circuits are added in pixels to sample the photodiodes’ voltage directly. Then the analog signals are sampled by CDS circuits and column-to-column FPN is eliminated. This two parts of digital and analog work independently, hence the analog outputs can be observed under different operating frequency of DPS circuits. By measuring the analog output results obtained under different testing, the intensity of interference to DPS’s photodiodes will be detected and analyzing when pixel circuits are working.

    第一章 簡介 1 1.1 研究動機 1 1.2 論文架構 3 第二章 背景資料 4 2.1 CCD/CMOS 影像感測器介紹 4 2.2 被動式像素感測器與主動式像素感測器 4 2.2.1 主動式/被動式感光元件感光原理 5 2.2.2 主動式像素感測器(Active Pixel Sensor, APS) 7 2.2.3 被動式像素感測器(Passive Pixel Sensor, PPS) 8 2.3 CMOS影像感測器的雜訊 10 2.3.1 暗電流 10 2.3.2 散粒雜訊(Shot Noise)與重置雜訊(Reset Noise) 11 2.3.3 固定圖像雜訊 (Fixed Pattern Noise) 13 2.4 相關二次取樣電路 (Correlated Double Sampling Circuit, CDS) 15 2.5 應用於影像感測器之類比數位轉換器架構 16 2.5.1 脈寬調變式 (Pulse Width Modulation, PWM) 18 2.5.2 多通道串聯位元輸出式 (Multichannel Bit-Serial, MCBS) 20 第三章 晶片架構及設計 23 3.1載子傳輸現象分析 23 3.1.1 載子傳輸介紹 23 3.1.2 光二極體受雜散載子干擾分析 25 3.2 晶片系統架構 26 3.3 像素電路架構 30 3.3.1 主動式影像感測電路與感光元件 31 3.3.2 比較器 33 3.3.3 記憶體 35 3.3.4 Power-Down電路 36 3.3.5 像素級類比數位轉換器模擬結果 37 3.4 感應放大器 39 3.4.1 操作原理 39 3.4.2 感應放大器模擬結果 40 3.5 相關二次取樣電路 41 3.5.1 操作原理 41 3.5.2 雜訊分析 42 3.5.3 相關二次取樣電路模擬結果 44 3.6 類比緩衝器 44 3.6.1 運算放大器特性分析 45 3.6.2 雜訊分析 48 3.6.3 模擬結果 48 3.7 數位邏輯電路 50 3.7.1 位移暫存器 50 3.7.2 除頻器 51 3.8 晶片佈局與訊號接腳 52 3.8.1 像素電路佈局與測試考量 52 3.8.2 全晶片佈局 54 第四章 晶片測試 57 4.1 量測系統架構 57 4.2 測試板設計 58 第五章 總結與未來改善 60 5.1 總結 60 5.2 未來改善 61 參考文獻 63 自述 65

    [1] A. J. Blanksby, M. J. Loinaz, “Performance Analysis of a Color CMOS Photogate Image Sensor,” IEEE Trans. on Electron Devices, vol. 47, no. 1, pp.55-64, Jan. 2000.
    [2] K. Yoon, C. Kim, B. Lee, D. Lee, “Single-chip CMOS Image Sensor for Mobile Applications,” ISSCC Digest of Technical Papers, pp. 36-37, 2002.
    [3] B. Ackland, A. Dickinson, “Camera on a chip,” IEEE international Solid-State Circuits Conference, pp.22-25, February 1996.
    [4] L.J. Kozlowski, J. Luo, and A. Tomasini, “Performance Limits in Visible and Infrared Imager Sensors,” IEEE IEDM Technical Digest, pp.867-70, December 1999.
    [5] Steven John Decker, “A Wide Dynamic Range CMOS Imager With Parallel On-Chip Analog-to-Digital conversion,” PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.
    [6] A. El Gamal, “Trends in CMOS Image Sensor Technology and Design,” in IEDM Tech. Dig., December 2002, pp. 805–808..
    [7] D.X.D. Yang, A. El Gamal, B. Fowler and H. Tian, “A 640x512 CMOS Image Sensor with Ultra Wide Dynamic Range Floating Point Pixel Level ADC,” IEEE international Solid-State Circuits Conference, WA 17.5, 1999.
    [8] C.-C. Wang, “A Study of CMOS Technologies for Image Sensor Applications,” PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, Aug. 2001.
    [9] C. Xu, C. Shen, A. Bermak and M. Chan, “A New Digital-Pixel Architecture for CMOS Image Sensor with Pixel-level ADC and Pulse Width Modulation Using a 0.18 um CMOS Technology,” IEEE Conference on Electron Devices and Solid-State Circuits, pp.265-268, 2003.
    [10] D. X. D. Yang, B. Fowler and A. El Gamal, “A Nyquist-Rate Pixel-Level ADC for CMOS Image Sensor,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 348-356, March 1999.
    [11] S. Kleinfelder, S.H. Lim, X. Liu and A. El Gamal, “A 10,000 Frames/s CMOS Digital Pixel Sensor,” IEEE Journal of Solid-State Circuits, vol 36, pp. 2049 - 2059, December 2001.
    [12] J.-S. Ho, M.-C. Chiang, H.-M. Cheng, T.-P. Lin, and M.-Jer. Kao, “A New Design for A 1280x1024 Digital CMOS Image Sensor with Enhanced Sensitivity, Dynamic Range and FPN,” International Symposium on VLSI Technology, Systems, and Applications, pp.235-238, 1999.
    [13] K. Han, K. Lee, “Thermal Noise Modeling for Short‐Channel MOSFET’s,” Simulation of Semiconductor Processes and Devices, 2003. SISPAD 2003. International Conference, pp.79-82, September, 2003.

    下載圖示 校內:2012-07-11公開
    校外:2012-07-11公開
    QR CODE