| 研究生: |
張倬嘉 Chang, Cho-Chia |
|---|---|
| 論文名稱: |
微衛星太空級GPS接收器酬載之製作與測試 Implementation and Test of a Space-borne GPS Receiver Payload of Micro Satellite |
| 指導教授: |
莊智清
Juang, Jyh-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 太空級GPS接收器 、高動態 、低軌道 、微衛星 、酬載 |
| 外文關鍵詞: | Space-borne GPS Receiver, High Dynamic, Low Earth Orbit, Micro Satellite, Payload |
| 相關次數: | 點閱:134 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今,GPS已經成為一重要且成熟的導航系統,GPS系統除了設計提供地面上的導航應用外,在高動態環境例如地球低軌道上也有廣泛的應用。本論文旨在自行開發一太空級GPS接收器作為低軌道微衛星之酬載,並針對其性能測試詳細討論。太空級GPS接收器設計有別於一般商用型GPS接收器,這是因為低軌道環境的訊號受高動態影響而存在極大的都卜勒頻移,一般商用型GPS接收器並不支援如此高速運動所造成的都卜勒頻移。在低成本的考慮下,自行開發太空級GPS接收器是最好的選擇。本論文中,首先研究位於高度550公里、傾角22.3度之低軌道的GPS訊號特性,且分析低軌道上的GPS衛星可視性與都卜勒頻移;其次利用GPS訊號模擬器GSS7700測試所設計的太空級GPS接收器原型,並就高動態環境下所遭遇的問題與限制,提出適當的改善方案。最後以圖闡明太空級GPS接收器的性能分析。
Nowadays, GPS has become one of the most crucial navigation systems. GPS system was designed for near Earth navigation, nevertheless it’s also widely used in high dynamic environments such as Low Earth Orbit (LEO). This thesis details the performance test of a self-developed space-borne GPS receiver(GPSR) as a payload for a micro satellite. A space-borne GPSR differs from a commercial GPSR due to the high Doppler shifts and Doppler shift rates experienced in the high dynamic environment of LEO. A self-developed space-borne GPS navigation system is preferable from the consideration of cost-effectiveness. At first, the signal characteristics such as visibility and Doppler shift with respect to the GPS satellites are investigated for a satellite orbiting at altitude 550 km and 22.3 deg of inclination. Next, a prototype of space-borne GPSR which is also designed and tested by receiving the simulated GPS signal from simulator, GSS7700. Some consequences of the high dynamic environment are observed and appropriate countermeasures are presented. The design and development of the space-borne GPSR as well as its performance under a simulated high dynamic environment are discussed.
參考文獻
[1] S. Amiri and M. Mehdipour, “Accurate Doppler Frequency Shift Estimation for any Satellite Orbit,” in Proc. IEEE RAST, Page(s):602–607, 2007.
[2] R. R. Bate, D. D. Mueller, and J. E. White, Fundamentals of Astrodynamics, Dover Publications, Inc., 1971.
[3] K. Borre, A Software-Defined GPS and Galileo Receiver, Birkhauser, 2007.
[4] D. Brouwer, “Solution of the Problem of Artificial Satellite Theory without Drag,” Astronomical Journal, Vol.64, No.1274, Page(s):378–397, November, 1959.
[5] R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, Inc., 1992.
[6] CelesTrack Website, Supplemental Two-Line Element Sets,
available: http://celestrak.com/NORAD/elements/supplemental/
[7] Y. H. Chen and J. C. Juang, “A GNSS Software Receiver Approach for the Processing of Intermittent Data,” in Proc. Inst. Nav. GNSS Conf.,Fort Worth, TX, 2007.
[8] D. W. Chung, S. R. Lee, and S. J. Lee, “KOMPSAT-2 Orbit Determination Using GPS Signals,” in Proc. of GNSS, December, 2004.
[9] DB Engineering Pvt. Ltd., GPS1000 Reference Manual.
[10] F. M. Gardner, Phaselock Techniques, John Wiley & Sons, Inc., 2005.
[11] J. L. Gerner, J. L. Issler, D. Laurichesse, C. Mehlen, and N. Wilhelm, “TOPSTAR 3000 – An Enhanced GPS. Receiver for Space Applications,”Final Presentation of Topstar 3000 and the experimental GPS attitude receiver, ESTEC, October, 2000.
[12] C. J. Hegarty and E. Chatre, “Evolution of the Global Navigation Satellite System (GNSS),” in Proc. of the IEEE, Vol.96, No.12, Page(s):1936–1957, December, 2008.
[13] C. G. Hilton and J. R. Kuhlman, “Mathematical Models for the Space Defense Center,” Philco-Ford Publication No. U-3871, Page(s):17–28, November, 1966.
[14] F. R. Hoots and R. L. Roehrich, “Spacetrack Report #3: Models for Propagation of the NORAD Element Sets,” U. S. Air Force Aerospace Defense Command, Colorado Springs, CO., December, 1980.
[15] F. R. Hoots, “A Short, Efficient Analytical Satellite Theory,” AIAA Paper No.80–1659, August, 1980.
[16] R. S. Hujsak, “A Restricted Four Body Solution for Resonating Satellites with an Oblate Earth,” AIAA Paper No.79–136, June, 1979.
[17] ICD-GPS-200C Reference Book, available:http://www.navcen.uscg.gov
[18] J. C. Juang and Y. H. Chen, “Phase Frequency Tracking in a GNSS Software Receiver,” IEEE Journal of Selected Topics in Signal Proceedings, Vol.3, No.4, August, 2009.
[19] E. D. Kaplan and C. J. Hegarty, Understanding GPS:Principles and Applications, Artech House, 2006.
[20] M. H. Lane, and K. H. Cranford, “An Improved Analytical Drag Theory for the Artificial Satellite Problem,” AIAA Paper No. 69–925, August, 1969.
[21] S. Leung, O. Montenbruck, and B. Bruninga, “Hot Start of GPS Receivers for LEO Microsatellites,” NAVITECH'2001, December, 2001.
[22] M. Markgraf, O. Montenbruck, S. Santandrea, and J. Naudet, “Phoenix-GPS Navigation System Onboard the PROBA-2 Spacecraft First Flight Results,” in Proc. of the 4S Symp. , Small Satellites. Systems and Services, 2010.
[23] Mitel Semiconductor Ltd., GP2021 GPS Receiver Hardware Design, AN4855, Issue 2.0, October, 2001.,
available:http://www.mitel.com/PortalController?country=US
[24] O. Montenbruck and E. Gill, Satellite Orbits:Models, Methods, and Application, John Wiley & Sons, Inc., 1992.
[25] O. Montenbruck and E. Gill, “Real-time Estimation of SGP4 Orbital Elements from GPS Navigation Data,” Int. Symp. SpaceFlight Dynamics, June, 2000.
[26] O. Montenbruck and G. Holt, “Spaceborne GPS Receiver Performance Testing,” DLR, May, 2002.
[27] O. Montenbruck and C. Renaudie, “Phoenix-S/-XNS Performance Validation,” DLR, April, 2007.
[28] O. Montenbruck, J. Williams, T. Wang, and G. Lightsey, “Preflight Validation of the IGOR GPS Receiver for TerraSAR-X,” Space Flight Technology, German Space Operations Center, 2005.
[29] O. Montenbruck, T. V. Helleputte, R. Kroes, and E. Gill, “Reduced Dynamic Orbit Determination Using GPS Code and Carrier Measurements,” Aerospace Science and Technology, Page(s):261–271, 2005.
[30] B. W. Parkinson and S. W. Gilbert, “NAVSTAR Global Positioning System-Ten Years Later,” Proceedings of the IEEE, Vol.71, No.10, Page(s):1177–1186, October, 1983.
[31] A. Roncagliolo, C. E. De Blasis, and C. H. Muravchik, “GPS Digital Tracking Loops Design for High Dynamic Launching Vehicles,” in Proc. IEEE Int. Symp. Spread Spectrum Tech. Applicat., Page(s):41–45, 2006.
[32] Samsung Electronics Co. Ltd., S3C2443X 32-Bit RISC Microcontrollers User Manual Revision 1.2., available: http://www.samsung.com/global
[33] The Radio Amateur Satellite Corporation, OSCAR Satellite Status Summary, available: http://www.amsat.org/amsat-new/satellites/all_oscars.php
[34] J. B. Y. Tsui, Fundamentals of Global Positioning System Receivers, A Software Approach, John Wiley & Sons, Inc., 2001.
[35] D. A. Vallado and P. Crawford, “SGP4 Orbit Determination,” in AIAA Astrodynamics Specialist Conference and Exhibit, August, 2008.
[36] J. P. Vinti, G. J. Der, and N. L. Bonavito, Orbital and Celestial Mechanics, Amer. Inst. of Aeronautics, 1998.
[37] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Siggraph, 2001.
[38] J. Williams, E. G. Lightsey, S. P. Yoon, and R.E. Schutz, “Testing of the ICESat BlackJack GPS Receiver Engineering Model,” in ION-GPS-2002 Conference, Page(s): 24–27, September, 2002.
[39] Zarlink Semiconductor Ltd., GP2015 GPS Receiver RF Front End, DS4374, Issue 3.1, February, 2002.,
available:http://www.zarlink.com/zarlink/gp2015-datasheet-sept2007.pdf
[40] 石亞文, 太空級GPS接收器發展及模擬, 國立成功大學電機工程研究所碩士論文, 2004.
[41] 伍志恆, 利用FPGA板實現Galileo與GPS雙模衛星定位系統, 國立成功大學電機工程研究所碩士論文, 2009.
[42] 莊智清、黃國興, 電子導航, 全華科技圖書, 2001.