| 研究生: |
郭家竹 Kuo, Chia-Chu |
|---|---|
| 論文名稱: |
屏東來社溪內社溪匯流段莫拉克風災後河道水流及河床變動之數值模擬 Numerical Simulation on the River Flows and Riverbed Variations After Typhoon Morakot in the Confluence of Laishe and Neishe Rivers in Pingtung County |
| 指導教授: |
詹錢登
Jan, Chyan-Deng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 來社溪 、內社溪 、匯流河段 、清疏工程 、水理分析 、河床沖淤變化 |
| 外文關鍵詞: | Laishe River, Hydraulics Analysis, Dredging Projects, Riverbed Changed |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
莫拉克颱風(2009年8月)為屏東來社溪及內社溪集水區帶來長延時高強度的降雨,累積雨量超過2,000毫米,造成集水區內多處崩塌,大量土砂流入河道,使得河床高程急遽抬升,尤其是來社溪與內社溪匯流河段,河床嚴重淤積,威脅到鄰近部落居民的安全。風災過後河道高程急遽變化,政府機關對河道,尤其是匯流段河道,進行一系列的整治工程與清疏工作,用以降低河道溢堤風險。本研究首先收集莫拉克颱風前後不同時期的河道數值地形模型資料及河道清疏資料,然後使用HEC-HMS模式分析不同重現期延時24小時降雨條件下之集水區地表逕流,並使用CCHE2D二維水理模式分析不同條件下來社溪與內社溪匯流段的水理變化及河床變遷。
在河道水理分析方面,依據莫拉克風災前後2009及2010年河道數值地形,以定床水理模式模擬重現期100年降雨的水深與流速,結果顯示風災前匯流河段沒有溢堤現象,有重現期100年通洪能力;根據風災過後的河道地形分析結果,匯流段左岸沿東部落向西部落均有溢堤現象,溢堤深度約1.5~3.5公尺,表示河道淤積導致通洪能力大幅減少。依據清疏工程前後2013年及2014年5月河道數值地形分析結果,2013年清疏前地形有溢堤現象,溢堤深度約0.58~2.5公尺;2014年5月清疏後無溢堤現象,再以2014年10月經過颱風事件的地形分析結果,有溢堤現象,溢堤深度約0.44公尺,表示清疏工程有增加通洪能力的效果,但清疏河道受到上游土砂的堆積,通洪能力下降。以2018年10月地形經過九年時間的整治與清疏,河道高程下降,高灘地高程增加,通洪能力增加為重現期100年,表示長期的河道清疏對來社溪匯流段通洪能力有顯著效果。
在河床高程變遷分析方面,因為2014年5月與2018年10月定床模擬通洪能力為重現期100年。故以重現期100年延時24小時降雨之流量動床模擬,以2014年5月與2018年10月的河道數值地形模擬結果顯示匯流口處土砂堆積約3公尺與約1.5公尺,河道無溢堤情形發生。但河道有淤積的情形,因此需要每隔一段時間進行清疏與整治工程,以保持河道通洪能力。
Typhoon Morakot in August 2009 brought long-duration and high-intensity rainfall in the Laishe River and Neishe River catchment, causing riverbeds suddenly raised. This study first collects the DTM of the river and the river dredging projects before and after Typhoon Morakot in the Laishe River and Neishe River, and then uses the HEC-HMS model to simulate the surface runoff under the condition of rainfall duration 24 hours. Then uses the software of CCHE2D (two-dimensional hydraulic model) to simulate the hydraulic changes and riverbed changes in the confluence of Laishe and Neishe River. The results of fixed-bed hydraulic simulation show that the river was no dike overflow before Typhoon Morakot in 2009. After Typhoon Morakot in 2010, dike overflows about 1.5 to 3.5 meters in 100-year return period of rainfall. Representing that the flood transport capacity is drastically reduced. According to simulation results before and after the dredging projects, the dike overflow height was about 0.58~2.5 meters before dredging in 2013, and there was no overflow after dredging in 2014. In October 2018, after nine years of river dredging, the flood transport capacity is increased to the return period of 100 years. It means long-term river dredging has a significant effect on the flood transport capacity. The results of movable-bed simulation show that the river deposits about 3 meters in May 2014 and about 1.5 meters in October 2018 at the confluence reach, and the channel has no overflow dikes. It means that if there is a long-duration rainfall event, moderate dredging projects are still needed to maintain the flood transport capacity.
1.行政院農委會水土保持局,「來社溪集水區土砂變遷與分析」,2014。
2.行政院農委會水土保持局,「水土保持手冊」,2017。
3.行政院農委會水土保持局台南分局,「高變動溪床沖淤變化對保全對象之衝擊及因應評估(以來社溪內社溪匯流口為例)」,2018。
4.李岱玲,「CCHE2D模式應用於蜿蜒複式河槽變遷之研究」,國立交通大學土木工程學系碩士論文,2012。
5.施姵瑜,「土砂運移對於陳有蘭溪河床演變之影響」,國立中興大學水土保持學系碩士論文,2012。
6.張海燕,「河流演變工程學」,科學出版社,1990。
7.張凱雯,「應用HEC-HMS進行排水衝擊評估–以大里溪為例」,逢甲大學水利工程與資源保育學系研究所碩士論文,2014。
8.彭振捷,「應用二維水理模式評估碼崙溪河道清疏成效之研究」,國立中興大學水土保持學系碩士論文,2016。
9.黃琮吉,「來社溪河床穩定性分析之研究」,國立屏東科技大學水土保持學系碩士論文,2018。
10.經濟部水利署水利規劃試驗所與交通大學團隊,「美國國家計算水科學及工程中心河道變遷模式之引進及應用研究 (2/3)」,2008。
11.經濟部水利署水利規劃試驗所與交通大學團隊,「美國國家計算水科學及工程中心河道變遷模式之引進及應用研究 (3/3)」,2009。
12.詹子瑩,「河道沿岸土體崩塌阻塞水流之影響研究-以來義鄉來社溪為例」,逢甲大學水利工程與資源保育學系研究所碩士論文,2015。
13.詹錢登,「泥沙運行學」,五南出版社,2018。
14.廖達峻,「無人飛行載具於河道變遷及防災應用之可行性-以來社溪為例」,國立台北科技大學土木工程系土木與防災碩士班碩士論文,2016。
15.歐信宏,「HEC-HMS降雨-逕流模式應用之研究」,國立成功大學水利及海洋工程學系碩士論文,2001。
16.盧錫彥,「應用二維水理模式評估河道演變之研究」,國立中興大學土木工程研究所碩士論文,2012。
17.賴東暘,「莫拉克事件後來社溪集水區及匯流段鄰近河道演變之研究」,國立成功大學水利及海洋工程學系碩士論文,2019。
18.闕帝旺,「野溪淤積土砂清疏之數值模擬-以來社溪為例」,逢甲大學水利工程與資源保育學系研究所碩士論文,2013。
19.蘇漢,「應用三維 CCHE3D 輸砂模式評估河川沖刷行為之研究-以新竹鳳山溪流域為例」,2018。
20.Bray, D. I. (1979). Estimating average velocity in gravel-bed rivers. Journal of the Hydraulics Division, 105(9), 1103-1122.
21.Brunner, G. W. (2016). HEC-RAS River analysis system, 2D modeling user’s manual version 5.0. Davis: US Army Corps of Engineers, hydrologic engineering center.
22.Desiree Tullos & Hsiao‐Wen Wang. (2013).Morphological responses and sediment processes following a typhoon-induced dam failure, Dahan River, Taiwan. Earth Surface Processes and Landforms, 39(2), 245-258. doi:10.1002/esp.3446.
23.Jia, Y., & Wang, S. S. (2001). CCHE2D: Two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. National Center for Computational Hydroscience and Engineering, Technical Report No. NCCHE-TR-2001-1.
24.Laursen, E. M. (1958). The total sediment load of streams. Journal of the Hydraulics Division, 84(1), 1-36.
25.Meyer-Peter, E., & Müller, R. (1948). Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.
26.M. Gordon Wolman, and John P. Miller(1960).Magnitude and Frequency of Forces in Geomorphic Processes.
27.Phillips, B. C., & Sutherland, A. J. (1989). Spatial lag effects in bed load sediment transport. Journal of Hydraulic Research, 27(1), 115-133.
28.Scharffenberg, W. A., & Fleming, M. (2014). Hydrologic Modeling System HEC-HMS. User’s Manual, ver. 4.0. US Army Corps of Engineers, Hydrologic Engineering Center.
29.Thuc, T. (1991). Two-dimensional morphological computations near hydraulic structures. AIT Doctoral Dissertation, AIT, Bangkok, Thailand.
30.Van Rijn, L. C. (1984). Sediment transport, part I: bed load transport. Journal of hydraulic engineering, 110(10), 1431-1456.
31.Van Rijn, L. C. (1984). Sediment transport, part III: bed forms and alluvial roughness. Journal of hydraulic engineering, 110(12), 1733-1754.
32.Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. The Journal of Geology, 68(1), 54-74.
33.Williams, G. P. (1978). Bank‐full discharge of rivers. Water resources research, 14(6), 1141-1154.
34.Wu, W., Rodi, W., & Wenka, T. (2000). 3D numerical modeling of flow and sediment transport in open channels. Journal of hydraulic engineering, 126(1), 4-15.
35.Wu, W. (2001). CCHE2D sediment transport model (version 2.1). National Center for Computational Hydroscience and Engineering, The University of Mississippi, MS, USA.
36.Wu, W., & Vieira, D. A. (2002). One-dimensional channel network model CCHE1D version 3.0–technical manual. National Center for Computational Hydroscience and Engineering Technical Report No. NCCHE-TR-2002-02.
37.Weiming Wu (2008). Computational River Dynamics. CRC Press.
38.Yalin, M. S. (1972). Mechanics of sediment transport.
39.Yang, C. T. (1973). Incipient motion and sediment transport. Journal of the hydraulics division, 99(10), 1679-1704.
40.Zhang, Y. (2006). CCHE-GUI-Graphical users interface for NCCHE model user’s manual. Version 3.0 Technical Report No. NCCHE-TR-2006-02. National Center for Computational Hydroscience and Engineering, University of Mississippi, Oxford.
校內:2025-07-31公開