簡易檢索 / 詳目顯示

研究生: 劉品毅
Liu, Pin-Yi
論文名稱: 應用GaN E-HEMT於全橋諧振轉換器之研製
Design and Implementation of Full-Bridge Resonant Converter with GaN E-HEMT
指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: 寬能隙元件增強型氮化鎵高電子遷移率電晶體全橋諧振轉換器閘極驅動器
外文關鍵詞: wide bandgap device, GaN E-HEMT, full-bridge resonant converter, gate drive circuit
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提高電源轉換器之切換頻率可提升功率密度,但相對地會造成很大的切換損失,GaN E-HEMT具有很快的切換速度,適合電源轉換器高頻切換應用。本論文使用GaN E-HEMT功率開關於全橋諧振轉換器,此架構具有零電壓切換之特性,使轉換器工作於高切換頻率提升功率密度。本論文首先介紹GaN E-HEMT之特性,分析全橋諧振轉換器動作原理,並探討GaN E-HEMT閘極驅動電路之要求。最後以數位訊號處理器TMS320F28335作為主架構控制器,實作一切換頻率為1 MHz之全橋諧振轉換器,輸入電壓為380 ~ 420 V、輸出為48 V / 960 W,並以同步整流提升系統效率,實驗結果顯示最高效率於50%負載時為90.5%。

    Increasing the switching frequency of the power converters can increase the power density, but it will cause more switching losses. Gallium nitride enhancement mode high electron mobility transistors (GaN E-HEMT) have fast switching speed characteristic, it is suitable for high switching frequency applications. In this thesis, GaN E-HEMT are used as the main switches of the full-bridge resonant converter which has the soft-switching technology, so it can be operated at high switching frequency to increase the power density. The characteristics of GaN E-HEMT are investigated, and the operating principles of full-bridge resonant converter are analyzed, and the design considerations of gate drive circuits are discussed in this thesis. The digital signal processor, TMS320F28335, is used as the main controller. Finally, an experimental prototype is built with the switching frequency 1 MHz, the input voltage 380-420 V, the output voltage 48 V, and the rated power 960 W. System efficiency can be further improved by synchronous rectifiers technology, and the highest efficiency is 90.5 % at 50 % load.

    TABLE OF CONTENTS Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 4 Chapter 2 Introduction of Soft-Switching Isolated DC-DC Converters and Wide Bandgap Devices 5 2.1 Introduction of Soft-Switching Isolated DC-DC Converter 7 2.2 Introduction of Wide Bandgap Devices 14 Chapter 3 Analysis of Full-Bridge Resonant Converter with GaN E-HEMT 19 3.1 Operating Principles of Full-Bridge Resonant Converter 19 3.1.1 Operating Principles in SRC Region 20 3.1.2 Operating Principles in LLC Region 23 3.2 Steady State Characteristics of Full-Bridge Resonant Converter 28 3.3 Gate Driver Circuits for GaN E-HEMT 31 Chapter 4 Hardware Implementation and Experimental Results 34 4.1 System Specifications and Key Parameters Design 34 4.2 Experimental Results and Discussions 44 Chapter 5 Conclusions and Future Works 47 5.1 Conclusions 47 5.2 Future Works 48 References 49

    [1] C. Fei, R. Gadelrab, Q. Li, and F. C. Lee, “High-frequency three-phase interleaved LLC resonant converter with GaN devices and integrated planar magnetics,” IEEE J. Emerg. Sel. Topics in Power Electron., vol. 7, no. 2, pp. 653-663, Jun. 2019.
    [2] W. Qin, L. Zhang, and X. Wu, “Re-examination of ZVS condition for MHz LLC converter operating at resonant frequency,” in Proc. IEEE PEAC, pp. 1-4, 2018.
    [3] R. Ramachandran and M. Nymand, “Effectively paralleling GaN FETs to achieve ultra-high efficiency in an isolated DC-DC converter,” in Proc. IEEE ICRERA, pp. 956-960, 2016.
    [4] H. Matsumori, T. Kosaka, K. Sekido, K. Kim, T. Egawa, and N. Matsui, “Isolated DC-DC converter utilizing GaN power device for automotive application,” in Proc. IEEE APEC, pp. 1704-1709, 2019.
    [5] R. Chen and S. Y. Yu, “A high-efficiency high-power-density 1MHz LLC converter with GaN devices and integrated transformer,” in Proc. IEEE APEC, pp. 791-796, 2018.
    [6] A. Amirahmadi, M. Domb, and E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches,” in Proc. IEEE APEC, pp. 350-354, 2017.
    [7] D. Fu, B. Lu, and F. C. Lee, “1MHz high efficiency LLC resonant converters with synchronous rectifier,” in Proc. IEEE Power Electron. Specialists Conf., pp. 2404-2410, 2007.
    [8] C. Liu, B. Gu, J. S. Lai, M. Wang, Y. Ji, G. Cai, Z. Zhao, C. L. Chen, C. Zhang, and P. Sun, “High-efficiency hybrid full-bridge–half-bridge converter with shared ZVS lagging leg and dual outputs in series,” IEEE Trans. on Power Electron., vol. 28, no. 2, pp. 849-861, Feb. 2013.
    [9] Z. F. Shang, R. X. Hao, and X. J. You, “A novel full-bridge DC-DC converter with full-range ZVS and reduced conduction losses,” in Proc. IEEE ACEPT, pp. 1-6, 2016.
    [10] R. Perrin, N. Quentin, B. Allard, C. Martin, and M. Ali, “High-temperature GaN active-clamp flyback converter with resonant operation mode,” IEEE J. Emerg. Sel. Topics in Power Electron., vol. 4, no. 3, pp. 1077-1085, Sep. 2016.
    [11] Y. K. Lo and J. Y. Lin, “Active-clamping ZVS flyback converter employing two transformers,” IEEE Trans. on Power Electron., vol. 22, no. 6, pp. 2416-2423, Nov. 2007.
    [12] V. Gautem and P. Sensarma, “Enhancing the voltage gain of a flyback converter using leakage energy,” IEEE Trans. on Ind. Appl., vol. 54, no. 5, pp. 4717-4727, Sep.-Oct. 2018.
    [13] Y. K. Lo, C. Y. Lin, M. T. Hsieh, and C. Y. Lin, “Phase-shifted full-bridge series-resonant DC-DC converters for wide load variations,” IEEE Trans. on Ind. Electron., vol. 58, no. 6, pp. 2572-2575, Jun. 2011.
    [14] H. Wu, L. Chen, and Y. Xing, “Secondary-side phase-shift-controlled dual-transformer-based asymmetrical dual-bridge converter with wide voltage gain,” IEEE Trans. on Power Electron., vol. 30, no. 10, pp. 5381-5392, Oct. 2015.
    [15] M. Narimani and G. Moschopoulos, “A new single-phase single-stage three-level power-factor-correction AC–DC converter with phase-shift modulation,” IEEE Trans. on Ind. Electron., vol. 60, no. 9, pp. 3731-3735, Jun. 2012.
    [16] S. H. Lee, C. Y. Park, J. M. Kwon, and B. H. Kwon, “Hybrid-type full-bridge DC/DC converter with high efficiency,” IEEE Trans. on Power Electron., vol. 30, no. 8, pp. 4156-4164, Aug. 2015.
    [17] B. Zhao, Q. Song, and W. Liu, “Power characterization of isolated bidirectional dual-active-bridge DC–DC converter with dual-phase-shift control,” IEEE Trans. on Power Electron., vol. 27, no. 9, pp. 4172-4176, Sep. 2012.
    [18] J. W. Kim, D. Y. Kim, C. E. Kim, and G. W. Moon, “A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system,” IEEE Trans. on Power Electron., vol. 29, no. 4, pp. 1562-1566, Apr. 2014.
    [19] G. B. Koo, G. W. Moon, and M. J. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. on Ind. Electron., vol. 52, no. 1, pp. 228-235, Feb. 2005.
    [20] H. Wang, S. Dusmez, and A. Khaligh, “Design and analysis of a full-bridge LLC-based PEV charger optimized for wide battery voltage range,” IEEE Trans. on Vehicular Technology, vol. 63, no. 4, pp. 1603-1613, May 2014.
    [21] H. I. Hsieh, H. L. Chiu, and G. C. Hsieh, “Performance study of high-power half-bridge interleaved LLC converter,” in Proc. IEEE IPEC, pp. 123-129, 2018.
    [22] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, pp. 728-735, 2001.
    [23] H. Huang, “Designing an LLC resonant half-bridge power converter,” Texas Instruments Power Supply Design Seminar SEM1900, topic 3, TI literature no. SLUP263, 2010.
    [24] Fairchild Semiconductor Corp., “AN-6104 LLC resonant converter design using FAN7688,” Preliminary Datasheet, 2015.
    [25] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. on Power Electron., vol. 18, no. 3, pp. 907-914, May 2013.
    [26] Y. Zhang, K. H. Teo, and T. Palacios, “Beyond thermal management: incorporating p-diamond back-barriers and cap layers into AlGaN/GaN HEMTs,” IEEE Trans. on Electron Devices, vol. 63, no. 6, pp. 2340-2345, Apr. 2016.
    [27] O. Bulut and M. Timur Aydemir, “Design and loss analysis of a 200-W GaN based active clamp forward converter,” in Proc. IEEE ICEEE, pp. 97-100, 2018.
    [28] E. A. Jones, F. Wang, and D. Costinett, “Review of commercial GaN power devices and GaN-based converter design challenges,” IEEE J. Emerg. Sel. Topics in Power Electron., vol. 4, no. 3, pp. 707-719, Sep. 2016.
    [29] L. Bartolomeo, L. Abbatelli, M. Macauda, F. Di Giovanni, G. Catalisano, M. Ryzek, and D. Kohout, “Wide band gap materials: revolution in automotive power electronics,” in Proc. EVTeC & APE Japan, May 2016.
    [30] GaN Systems Inc. “GS66508B bottom-side cooled 650 V E-mode GaN transistor,” Preliminary Datasheet, 2019.
    [31] Rohm Semiconductor, “SCT3080AL N-channel SiC power MOSFET,” Preliminary Datasheet, 2017.
    [32] STMicroelectronics, “STB38N65M5 N-channel 650 V, 0.073 Ohm typ., 30 A MDmesh M5 power MOSFET in D2PAK package,” Preliminary Datasheet, 2014.
    [33] A. Lidow, J. Strydom, M. de Rooij, and D. Reusch, “GaN Transistor for Efficient Power Conversion, Second Edition,” John Wiley & Sons, Inc.
    [34] GaN Systems Inc, “GN001 application guide design with GaN enhancement mode HEMT,” Preliminary Datasheet, Apr. 2018.
    [35] G. Amarnath, G. Srinivas, and T. R. Lenka, “Electrical characteristics and 2DEG properties of passivated InAlN/AlN GaN HEMT,” in Proc. IEEE ICCCI, pp. 1-4, 2015.
    [36] T. Ishibashi, M. Okamoto, E. Hiraki, T. Tanaka, T. Hashizume, D. Kikuta, and T. Kachi, “Experimental validation of normally-on GaN HEMT and its gate drive circuit,” IEEE Trans. on Ind. Appl., vol. 51, no. 3, pp. 2415-2422, May-Jun. 2015.
    [37] Z. Liu, “Characterization and failure mode analysis of cascode GaN HEMT” M.S. thesis, Science in Elect. Eng., Virginia Tech, Blackburg, VA, May 2014.
    [38] J. Xiang, X. Ren, Y. Wang, and Y. Zhang, “Investigation of cascode structure GaN devices in ZCS region of LLC resonant converter,” in Proc. IEEE ECCE, pp. 1374-1378, 2017.
    [39] N. Hari, T. Logan, and R. McMahon, “Design considerations for 600V GaN cascode based half-bridge converter systems for utility based application,” in Proc. IET PEMD, pp. 1-6, 2016.
    [40] P. Czyż, “Performance evaluation of a 650 V E-HEMT GaN power switch,” in Proc. IEEE IECON, pp. 7-12, 2015.
    [41] C. Kong, J. Zhou, Y. Kong, K. Zhang, and T. Chen, “Enhancement-mode GaN HEMT power electronic device with low specific on resistance,” in Proc. IEEE SSLChina: IFWS, pp. 183-185, 2017.
    [42] H. Peng, R. Ramabhadran, R. Thomas, and M. J. Schutten, “Comprehensive switching behavior characterization of high speed gallium nitride E-HEMT with ultra-low loop inductance,” in Proc. IEEE WiPDA, pp. 116-121, 2017.
    [43] J. Lu, D. Chen, and L. Yushyna, “A high power-density and high efficiency insulated metal substrate based GaN HEMT power module,” in Proc. IEEE ECCE, pp. 3654-3658, 2017.
    [44] Y. C. Niu, Y. T. Huang, C. L. Chen, and Y. M. Chen, “Design considerations of the gate drive circuit for GaN HEMT devices,” in Proc. IEEE ACEPT, pp. 1-6, 2018.
    [45] H. Umegami, F. Hattori, Y. Nozaki, M. Yamamoto, and O. Machida, “A novel high-efficiency gate drive circuit for normally off-type GaN FET,” IEEE Trans. on Ind. Appl., vol. 50, no. 1, pp. 593-599, Jan.-Feb. 2014.
    [46] Ferroxcube, “3F4 material specification,” Preliminary Datasheet, Sep. 2008.

    無法下載圖示 校內:2025-02-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE