| 研究生: |
李清平 Lee, Ching-Ping |
|---|---|
| 論文名稱: |
鈷、鋁共摻雜氧化鋅系統其鋁對磁性影響之研究 The effect of Al on the magnetic property of (Co, Al) co-doped ZnO system |
| 指導教授: |
黃榮俊
Huang, J. C. A. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 氧化鋅 、稀磁性半導體 、束縛極化子 |
| 外文關鍵詞: | Diluted magnetic semiconductor, BMP model, ZnO |
| 相關次數: | 點閱:87 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
討論以不同施子能階的束縛極化子對鈷摻雜在氧化鋅的薄膜中對樣品磁性上的影響,可以發現較淺層的施子能階可以讓樣品有較大的磁性。本實驗討論兩種不同的施子能階,分別是氧化缺所產生的施子能階及以鋁三正離子取代鋅二正離子時產生的施子能階,由結果可以發現鋁三正離子取代鋅二正離子時產生的施子能階能使樣品有較大的飽和磁化量,這是由於其施子能階較氧空缺更為淺層。且退火後不同施子數量變化的不同,也造成樣品磁性的變化也不一致。
In this thesis, the effect of different donors on the magnetic properties of Co-doped ZnO was investigated, and it was found that when the donor level was shallower, the magnetic of samples was larger. We discussed two kind of donor level: oxygen vacancy and the substitution of Al3+ for Zn2+, and the result is the sample with Al3+ -substituted Zn2+ had larger saturation magnetization, this is due to the donor level is shallower than oxygen vacancy. Furthermore, after the annealing, different kind of donor had different change of magnetic properties.
[1.1] 黃榮俊、許華書,物理雙月刊,26期4卷2004年8月,p.599
[1.2] 胡裕民,物理雙月刊,26期4卷2004年8月,p.587
[1.3] H. Ohno et al., Science, 281 (1998), 951
[1.4] G. Neumann et al., Phys. Stat. Soli. B, 105 (1981), 605
[1.5] A.J. Behan et al., Phys. Rev. Lett., 100 (2008), 047206
[1.6] X.J. Liu et al., J. Phys: Cond. Matter, 19 (2007), 296208
[1.7] X.C. Liu et al., J.Phys: Cond. Matter, 20 (2008), 025208
[1.8] X.H. Xu et al., New J. Phys., 8 (2006), 135
[1.9] X.C. Liu et al., Appl. Phys. Lett., 92 (2008), 042502
[1.10] T. Deitl, H. Ohno et al., Science, 287 (2000), 1019
[2.1] T. Deitl, H. Ohno et al., Science, 287 (2000), 1019
[2.2] C. Zener et al., Phys. Rev., 81 (1950), 440
[2.3] Dana A. Schwartz et al., Adv. Mater., 16 (2004), No.23-24
[2.4] C. Zener, Phys. Rev., 82 (1951), 403
[2.5] P.W. Anderson et al., Phys. Rev., 100 (1955), 675
[2.6] D.R. Gamelin et al., J. Am. Chem. Soc., 118 (1996), 8085
[2.7] H. Akai et al., Phys. Rev. Lett., 81 (1998), 3002
[2.8] J. Konig et al., Phys. Rev. Lett., 84 (2000), 5628
[2.9] J. Konig et al., Phys. Rev. Lett., 86 (2001), 5637
[2.10] K. A. Griffin et al., Phys. Rev. Lett., 94 (2005), 157204
[2.11] V. I. Litvinov et al., Phys. Rev. Lett., 86 (2001), 5593
[2.12] M. Berciu et al., Phys. Rev. Lett., 87 (2001), 107203
[2.13] J. M. D. Coey et al., Nature Materials, 4 (2005), 173
[3.1] G.K. Wehner et al.﹐Handbook of Thin Film Technology, McGraw-Hill﹐New York﹐1970
[3.2] Soshin Chikazumi and Stanley H. Charap, Physics of Magnetism, (1972)
[3.3] 國立台灣大學物理學系,楊鴻昌教授,科學新知,6期12卷1991年,p72-79
[3.4] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES (1988), 574
[3.5] J.J. Rehr et al., Rev. Mod. Phys., 72 (2000), 621
[3.6] 半導體元件物理與製作技術(第二版),施敏、黃調元 (2006), p.96-98
[4.1] J.M.D. Coey et al., nature mater., 4 (2005), 173
[4.2] A.J. Behan et al., Phys. Rev. Lett., 100 (2008), 047206
[4.3] X.C. Liu et al., Appl. Phys. Lett., 92 (2008), 042502
[4.4] X.C. Liu et al. Appl. Phys. Lett., 88 (2006), 252503
[4.5] G..S. Chang et al., Phys. Rev., B 75 (2007), 195215
[4.6] T.J. Regan et al., Phys. Rev., B 64 (2001), 214422
[4.7] X.J. Liu et al., J. Phys: Cond. Matter, 19 (2007), 296208
[4.8] J.F. Chang et al., Appl. Sur. Sci., 183 (2001), 18
[4.9] K.C. Park et al., Thin Solid Films, 305 (1997), 201
[4.10] S.S Lin Sur. Coa. Tech., 190 (2005), 39