簡易檢索 / 詳目顯示

研究生: 林祐陞
Lin, Yu-Sheng
論文名稱: 適用於低畫面更新頻率智慧手錶之主動式有機發光二極體顯示器畫素電路設計
Design of New AMOLED Pixel Circuits for Low-Frame-Rate Smartwatches
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 主動式矩陣有機發光二極體畫素補償電路低溫多晶矽薄膜電晶體穿戴式裝置顯示器
外文關鍵詞: AMOLED, compensated pixel circuit, LTPS-TFT, wearable displays
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低溫多晶矽薄膜電晶體具有優越的電流驅動能力以及其能達到小的電路佈局面積,因此常被應用在製作智慧手機及智慧手錶之主動式矩陣有機發光二極體顯示器背板。然而,低溫多晶矽薄膜電晶體製程因為雷射退火製程之雷射能量不一致造成臨界電壓變異,導致驅動有機發光二極體的電流失真。因此許多畫素補償電路被提出來以補償低溫多晶矽薄膜電晶體之臨界電壓變異,然而其中部分畫素電路並未同時考慮到閃爍現象及電壓源因電線線阻造成之電壓下降,這些缺陷會降低顯示器之對比度、增加額外的功率消耗及造成顯示畫面之亮度不均勻。為應用在穿戴式裝置上例如智慧手錶,這些行動裝置需要一個低功率消耗之顯示器以達到消費者的長時間使用需求,因此透過降低顯示器之操作頻率,達到減少IC資料電壓供應及畫素電路內電容充放電所造成的功率消耗。然而低溫多晶矽薄膜電晶體的高漏電流會導致儲存電容無法維持所需發光電流之資料電壓,進而導致畫面失真。
    為了應用在智慧手錶之低畫面更新頻率顯示器,本論文提出四個應用於主動式矩陣有機發光二極體顯示器的畫素電路。四個設計的畫素電路皆改善漏電流之影響以應用在穿戴式裝置上。第一個7T1C畫素電路有效補償臨界電壓變異來達到高均勻度之顯示畫面,且此電路也避免閃爍現象,提供高對比之顯示畫面,模擬結果證明其有效改善畫面之均勻度及減緩漏電流影響。然而,此電路尚未考慮到電壓源的變異的影響,因此第二個8T2C畫素電路,以源極隨耦器之架構來補償臨界電壓與電壓源之變異並避免閃爍現象,此電路也同樣能達到緩和漏電流影響之效果。然而為在小尺寸顯示器上提高解析度,需要更精簡的畫素電路架構。因此,提出第三個7T2C畫素電路,其架構不僅能達到臨界電壓及電壓源變異之補償,且漏電流補償能不受有機發光二極體元件特性影響,達到一致的漏電補償效果,然而此畫素電路之7T2C架構仍較為複雜,增加應用在高解析度之小尺寸面板的困難度,且兩次的電容耦合效應會影響臨界電壓變異之補償效果,因此提出第四個7T1C達到補償臨界電壓變異、電壓源變異、畫素電路內的驅動電晶體閘極端漏電現象及抑制閃爍現象,且進一步縮減電容與訊號線數目,達到更小的電路佈局面積以利應用於更高解析度之小尺寸面板。

    Active-matrix organic light-emitting diode (AMOLED) displays based on low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) backplanes are widely adopted in mobile devices, such as smartphones and smartwatches, owing to the great current driving capability of LTPS TFTs and the small layout area. However, the non-uniform energy of excimer laser annealing (ELA) during the LTPS TFTs fabrication results in inevitable TFT VTH variation and the subsequent difference in OLED emission current. Numerous pixel circuits have been proposed to compensate for the VTH variation of LTPS TFTs. Nevertheless, the image flicker and the voltage current-resistance (I-R) drop in power lines are not considered in some pixel circuits. The defect leads to the reduction of contrast ratio, the increase of additional power consumption, and the non-uniform luminance of display images. For the display applications of wearable devices such as smartwatches, a power-saving display is required to meet consumers’ demand of long-term use. Thus, displays adopt low-frame-rate operation to reduce the frequency of data voltage supply from integrated circuits (ICs) and capacitors charging or discharging, thereby cutting down the power consumption. Nevertheless, the high leakage current of LTPS TFTs leads to the failure of storing the accurate data voltage in capacitors, resulting in image distortion.
    This thesis proposes four pixel circuits for low-frame-rate AMOLED displays. The four pixel circuits are designed to ameliorate the leakage current issue and achieve low power consumption for wearable devices. The first 7T1C pixel circuit compensates for VTH variation to achieve highly uniform images. Also, the circuit prevents flicker to provide the high quality of black images. Simulation results verify that the circuit effectively improves the uniformity of image and alleviates the leakage current. However, VDD I-R drop compensation is required in pixel circuits. Therefore, the second 8T2C pixel circuit is designed with a source-follower type structure to compensate for VTH variation and VDD I-R drops without image flicker. Also, the leakage current is also mitigated. Nevertheless, implementing higher resolution in small-size display requires the simpler structure of pixel circuits. Thus, the third 7T2C pixel circuit utilizing a source-follower connection structure is proposed for compensating the both variations of VTH and voltage drops in power lines. Furthermore, the image flicker is suppressed to enhance contrast ratio, and the leakage during the long-term emission period is also improved. However, the capacitive coupling effect after compensating period influences the accuracy of VTH compensation. Thus, the fourth 7T1C pixel circuit is proposed with an effective compensation of TFT VTH variation, VDD I-R drops, the leakage at the gate node of the driving TFT in pixel circuits, and the suppression of flicker phenomenon. Scan signals and capacitors are also reduced to achieve smaller layout area for pursuing high-resolution AMOLED displays in small-sized panels.

    Chinese Abstract ……………………………………………………………………………i English Abstract …………………………………………………………………………...iii Acknowledgement………………………………………………………...……………….v Contents …………………………………………………………………...……………….vi Table Captions ………………………………………………………………………...…viii Figure Captions …………………………………………………………………………….ix Chapter 1 Introduction 1.1 Background …………………………………………………………………………...1 1.2 Motivation and Prior Studies ………………………………………………….………3 1.3 Thesis Organization ………………………………………………………………….10 Chapter 2 New Pixel Circuit with Threshold Voltage and Leakage Current Compensate Scheme for Wearable AMOLED Displays 2.1 Status of AMOLED Displays Based on LTPS-TFTs ………………………………..12 2.2 Circuit Operation and Compensation Mechanism…………………………………...14 2.3 Results and Discussions ……………………………………………………………..16 2.4 Summary …………………………………………………………………………….17 Chapter 3 Alleviating Leakage Current by Adopting a Source-Follower Structure for AMOLED Displays of Wearable Applications 3.1 Prior Works of AMOLED Displays …..……………………………………………..21 3.2 Circuit Operation and Driving Scheme ……………………………………………...23 3.3 Results and Discussions ……………………………………………………………..25 3.4 Summary …………………………………………………………………………….26 Chapter 4 Consistent Leakage Compensating Structure for Low-Frame-Rate Display Applications 4.1 Status of AMOLED Displays …………………...…………………………………..31 4.2 Circuit Operation and Driving Scheme ……………………………………………...33 4.3 Results and Discussions ……………………………………………………………..34 4.4 Summary …………………………………………………………………………….36 Chapter 5 Pixel Circuit with Leakage Compensating Scheme and Simple Control Signals for Low-Frame-Rate Displays 5.1 Status of AMOLED Pixel Circuit …………......…………………………………..40 5.2 Circuit Operation and Driving Scheme ……………………………………………...42 5.3 Results and Discussions ……………………………………………………………..44 5.4 Summary …………………………………………………………………………….45 Chapter 6 Conclusions and Future Works 6.1 Conclusions .…...………….…………………………………………….…………...49 6.2 Future Works………………………… ……………………………………………...51 Appendix A: Gate Driver Circuit Using Charge-Holding and Time Division Driving Scheme for In-Cell Touch Panels A.1 Status of In-Cell Touch Circuit Prior Arts….………………………….…………...53 A.2 Gate Driver Circuit Operation……..…………………………………………………54 A.3 Results and Discussions…………………………………………………………..55 A.4 Summery…………………………………………………………………………..56 References ………………………...………………………………………………………60

    [1] K. Y. Lee and P. C. P. Chao, “A New AMOLED Pixel Circuit with Pulsed Drive and Reverse Bias to Alleviate OLED Degradation,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1123–1130, Apr. 2012.
    [2] X. Xu, R. A. Sporea, and X. Guo, “Source-gated Transistors for Powerand Area-efficient AMOLED Pixel Circuits,” J. Display Technol., vol. 10, no. 11, pp. 928–933, Nov. 2014.
    [3] C. L. Lin, P. C. Lai, L. W. Shih, C. C. Hung, P. C. Lai, T. Y. Lin, K. H. Liu, and T. H. Wang, “Compensation Pixel Circuit to Improve Image Quality for Mobile AMOLED Displays,” IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 489–499, Feb. 2019.
    [4] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of Brightness Uniformity by A New Voltage-Modulated Pixel Design for AMOLED Displays,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 743–745, Sep. 2006.
    [5] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai, and M. H. Cheng, “New Voltage-Programmed AMOLED Pixel Circuit to Compensate for Nonuniform Electrical Characteristics of LTPS TFTs and Voltage Drop in Power Line,” IEEE Electron Device Lett., vol. 61, no. 7, pp. 2454–2458, Jul. 2014.
    [6] M. J. Powell, C. Van Berkel, and J. R. Hughes, “Time and Temperature Dependence of Instability Mechanisms in Amorphous Silicon Thin Film Transistors,” Appl. Phys. Lett., vol. 54, no. 14, pp. 1323–1325, 1989.
    [7] M. H. Cho, H. Seol, H. Yang, P. S. Yun, J. U. Bae, K. S. Park, and J. K. Jeong, “High-Performance Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors Fabricated by Atomic Layer Deposition,” IEEE Electron Device Lett., vol. 39, no. 5, pp.688–691, May 2002.
    [8] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I.Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-Temperature Polysilicon Thin-Film Transistor Driving with Integrated Driver for High-Resolution Light Emitting Polymer Display,” IEEE Trans. Electron Devices, vol. 46, no. 12, pp. 2282–2288, Dec. 1999.
    [9] V. W. C. Chan, P. C. H. Chan, and C. Yin, “The effect of grain boundaries in the electrical characteristics of large grain polycrystalline thin-film transistor,” IEEE Trans. Electron Devices, vol. 49, no. 8, pp.1384–1391, Aug. 2002.
    [10] R. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The Impact of the Transient Response of Organic Light Emitting Diodes on the Design of Active Matrix OLED Displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [11] S. H. Moon, I. Haruhisa, K. Kim, C. W. Park, H. J. Chung, S. H. Kim, B. K. Kim, and O. Kim, “Highly Robust Integrated Gate-Driver for In-Cell Touch TFT-LCD Driven in Time Division Driving Method,” J. Display Technol., vol. 12, no. 5, pp. 435–441, May 2016.
    [12] Y. H. Tai, B. T. Cheng, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A New Pixel Circuit for Driving Organic Light-Emitting Diode with Low Temperature Polycrystalline Silicon Thin-Film Transistors,” J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.
    [13] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime Amelioration for an AMOLED Pixel Circuit by Using a Novel AC Driving Scheme,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2652–2659, Aug. 2011.
    [14] C. L. Lin, C. C. Hung, W. Y. Chang, M. H. Cheng, P. Y. Kuo, and Y. C. Cheng, “Voltage Driving Scheme Using Three TFTs and One Capacitor for Active-Matrix Organic Light-Emitting Diode Pixel Circuits,” J. Display Technol., vol. 8, no. 10, pp. 602–608, Oct. 2012.
    [15] H. Y. Lu, T. C. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A New Pixel Circuit Compensating for Brightness Variation in Large Size and High Resolution AMOLED Displays,” J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [16] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS Pixel Circuit with AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays,” J. Display Technol., vol. 8, no. 12, pp. 681–683, Dec. 2012.
    [17] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai, and B. R. Huang, “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays,” J. Display Technol., vol. 12, no. 5, pp. 425–428, May 2016.
    [18] C. L. Lin, P. S. Chen, M. Y. Deng, C. E. Wu, W. C. Chiu, and Y. S. Lin, “UHD AMOLED Driving Scheme of Compensation Pixel and Gate Driver Circuits Achieving High-Speed Operation,” IEEE J. Electron Devices Soc., vol. 6, pp. 26–33, 2018.
    [19] C. H. Ho, C. Lu, and K. Roy, “An Enhanced Voltage Programming Pixel Circuit for Compensating GB-Induced Variations in Poly-Si TFTs for AMOLED Displays,” J. Display Technol., vol. 10, no. 5, pp. 345–351, May 2014.
    [20] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690–692, Oct. 2004.
    [21] H. J. In and O. K. Kwon, “External Compensation of Nonuniform Electrical Characteristics of Thin-Film Transistors and Degradation of OLED Devices in AMOLED Displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377–379, Apr. 2009.
    [22] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha, and M. K. Han, “A New Poly-Si TFT Current-Mirror Pixel for Active Matrix Organic Light Emitting Diode,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 830–833, Oct. 2006.
    [23] B. Y. Chung , D. W. Park, Y. S. Park, D. Y. Choi, K. Kim, B. H. Kim, and S. S. Kim, “Driving Method for a 2D-3D Switchable AMOLED Display Using Progressive or Simultaneous Emission,” in SID Tech. Dig., 2011, pp. 268–271.
    [24] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Parche, “Polysilicon VGA Active Matrix OLED Displays—Technology and Performance,” in IEDM Tech. Dig., 1998, pp. 871–874.
    [25] S. J. Song, Y. Chen, J. Jang, and H. Nam, “Hybrid Voltage and Current Programming Pixel Circuit for High Brightness Simultaneous Emission AMOLED Display,” J. Display Technol., vol. 11, no. 3, pp. 255–260, Mar 2015.
    [26] C. L. Lin, M. Y. Deng, C. E. Wu, C. C. Hsu, and C. L. Lee, “Hydrogenated Amorphous Silicon Gate Driver with Low Leakage for Thin-Film Transistor Liquid Crystal Display Applications,” IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3193-3198, Aug. 2016.
    [27] L. W. Chu, P. T. Liu, and M. D. Ker, “Design of Integrated Gate Driver with Threshold Voltage Drop Cancellation in Amorphous Silicon Technology for TFT-LCD Application,” J. Display Technol., vol. 7, no. 12, pp. 657-664, Dec. 2011.
    [28] C. L. Lin, M. H. Cheng, C. D. Tu, C. E. Wu, and F. H. Chen, “Low-Power a-Si:H Gate Driver Circuit with Threshold-Voltage-Shift Recovery and Synchronously Controlled Pulldown Scheme,” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 136-142, Jan. 2015.
    [29] S. Tomita, T. Okada, and H. Takahashi, “An In-Cell Capacitive Touch-Sensor Integrated in an LTPS WSVGA TFT-LCD,” J. Soc. Inf. Display, vol. 20, no. 8, pp.441-449, Aug. 2012.
    [30] Y. Sugita, K. Kida, and S. Yamagishi, “In-cell Projected Capacitive Touch Panel Technology,” IEICE Trans. Electron., vol. E96-C, no. 11, pp. 1384- 1390, Nov. 2013.
    [31] C. L. Lin, C. E. Wu, C. E. Lee, F. H. Chen, P. S. Chen, and M. X. Wang, “Insertion of Simple Structure Between Gate Driver Circuits to Prevent Stress Degradation in In-Cell Touch Panel Using Multi-v Blanking Method,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3585-3591, Apr. 2018.
    [32] C. L. Lin, M. Y. Deng, C. E. Wu, P. S. Chen, and M. X. Wang, “Gate Driver Circuit Using Pre-Charge Structure and Time-Division Multiplexing Driving Scheme for Active-Matrix LCDs Integrated with In-Cell Touch Structures,” J. Display Technol., vol. 12, no. 11, pp. 1238-1241, Nov. 2016.
    [33] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating Lifetime of Phosphorescent Organic Light Emitting Devices,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2493–2495, May 2000.
    [34] C. L. Lin and Y. C. Chen, “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
    [35] N. H. Keum, K. H. Oh, S. K. Hong, and O. K. Kwon, “A Pixel Structure Using Block Emission Driving Method for High Image Quality in Active Matrix Organic Light-Emitting Diode Displays,” J. Display Technol., vol. 12, no. 11, pp. 1250-1256, Nov. 2016.

    下載圖示 校內:2024-07-25公開
    校外:2024-07-25公開
    QR CODE