簡易檢索 / 詳目顯示

研究生: 許仲堯
Shiu, Jung-Yau
論文名稱: 增廣立方體上的點泛圓性
Node-Pancyclicity of Augmented cubes
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 14
中文關鍵詞: 互連式網路增廣立方體環路嵌入圖形理論vertex-pancyclic
外文關鍵詞: vertex-pancyclicity, augmented cubes, interconnection networks, Graph-theoretic, cycle embedding
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 假設G=(V,E)是一個無向圖,其中V和E分別代表的是G中的點集合和邊集合。若圖G滿足vertex-pancyclic的性質就表示說,我們可以在圖G中任意選取一點u,使的我們在此圖G中找到的任意長度環路(範圍介於:一個整數L到圖G中所有的點個數|V|),均包含此點。本篇論文即是將此性質應用在增廣立方體上,我們提出在n維的增廣立方體上滿足vertex-pancyclic性質,而且環路的長度介於3到所有的點個數|V|,n>=2。

    A graph G=(V,E) is vertex-pancyclic if for every vertex u and any integer l ranging from a positive constant L to |V|,G contains a cycle C of length l such that u is in C.In this paper,we show that an n-dimensional augmented cube,where n>=2,is vertex-pancyclic with L=3.

    Abstract          i Contents          ii ListofFigures         iii 1 Introduction        1 2 Preliminaries       3 3 Vertex-pancyclicity    5 4 ConcludingRemarks    11 Bibliography        12

    [1] S.Abraham and K.Padmanabhan“The twisted cube topology for multiprocessors : A study in network asymmetry,”Journal of Parallel and Distributed Computing,13:104–110,1991.
    [2] ToruAraki and YukioShibata,“Pancyclicity of recursive circulantgraphs,”Informa-
    tion Processing Letters,vol.81,issue4,pp.187–190,2002.
    [3] J.C.Bermond,Ed.,“Interconnection Networks,”aspecial issue of Discrete Applied Mathematics,vol.37+38,1992.
    [4] J.Bang-Jansen and Y.Guo,“A note on vertex pancyclic oriented graphs,”Journal
    of Graph Theory,vol.31,pp.313–318,1999.
    [5] L.Bhuyan and D.P.Agrawal,“Generalized hypercubes and hyperbusstructure for
    a computer network,”IEEE Transactions on Computers,c.33,pp.323–333,1984.
    [6] E.van Blanken,J.vanden Heuvel,and H.J.Veldman,“Pancyclicity of hamiltonian line graphs,”Discrete Mathematics,vol.138,issue1–3,pp.379–385,1995.
    [7] J.A.Bondy,“Pancyclic graphs,”Journal of CombinatorialT heory-Series B,vol.11,
    issue 1,pp.80–84,1971.
    [8] F.B.Chedid and R.B.Chedid,“A new variation on hypercubes with smaller diameter,”Information Process Letters,vol.46,pp.275–280,1993.
    [9] S.A.Choudum and V.Sunitha,“Augmented cubes,”Networks,vol.40,no.2,pp.71–84,2002.
    [10] Jianxi Fan,“Hamiltonian-connectivity and cycle-embedding of the Mobius cubes,”
    Information Processing Letters,vol.82,pp.113–117,2002.
    [11] Jianxi Fan,Xiaola Lin,and Xiaohua Jia,“Node-pancyclicity and edge-pancyclicity
    of crossed cubes,”Information Processing Letters,vol.93,pp.133–138,2005.
    [12] F.Harary,Graph Theory,Addison-Wesley,Massachusetts,1972.
    [13] P.A.J.Hilbers,M.R.J.Koopman,and J.L.A.van de Snepscheut,“The twisted cube,”Parallel Architectures and Languages Europe,Volume I:Parallel Architectures,Eindhoven,The Netherlands,June15–19,1987,Proceedings,pp.152–159,1987.
    [14] D.F.Hsu,“Interconnection Networks and Algorithms,”a special issue of Networks,
    vol.23,no.4,1993.
    [15] H.C.Hsu,L.C.Chiang,J.M.Tan,and L.H.Hsu,“Fault hamiltonicity of augmented
    cubes,”Parallel Computing,vol.31,pp.131-145,2005.
    [16] W.T.Huang,W.K.Chen,and C.H.Chen,“Pancyclicity of Mobius cubes”,in
    Proceedings of the 9th International Conference on Parallel and Distributed Systems(ICPADS'02),pp.591–596,2002.
    [17] M.Kouider and A.Marczyk,“On pancyclism in hamiltonian graphs,”Discrete Mathematics, vol.251,issue1–3,pp.119–127,2002.
    [18] F.T.Leighton,Introduction to Parallel Algorithms and Architecture: Arrays,Trees, Hypercubes,Morgan Kaufmann,SanMateo,CA,1992.
    [19] B.Randerath,I.Schiermeyer,M.Tewes,and L.Volkmann,“Vertex pancyclic graphs,”Discrete Applied Mathematics,vol.120,issue1–3,pp.219–237,2002.
    [20] D.Wang,“Embedding hamiltonian cycles into folded hypercubes with faultylinks,”
    Journal of Parallel and Distributed Computing, vol.61,pp.545–564,2001.
    [21] Junming Xu, Topological Structure and Amalysis of Interconnection Networks,
    Kluwer Academic Publishers,2001.

    下載圖示 校內:2009-08-23公開
    校外:2009-08-23公開
    QR CODE