| 研究生: |
許仲堯 Shiu, Jung-Yau |
|---|---|
| 論文名稱: |
增廣立方體上的點泛圓性 Node-Pancyclicity of Augmented cubes |
| 指導教授: |
謝孫源
Hsieh, Sun-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 14 |
| 中文關鍵詞: | 互連式網路 、增廣立方體 、環路嵌入 、圖形理論 、vertex-pancyclic |
| 外文關鍵詞: | vertex-pancyclicity, augmented cubes, interconnection networks, Graph-theoretic, cycle embedding |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
假設G=(V,E)是一個無向圖,其中V和E分別代表的是G中的點集合和邊集合。若圖G滿足vertex-pancyclic的性質就表示說,我們可以在圖G中任意選取一點u,使的我們在此圖G中找到的任意長度環路(範圍介於:一個整數L到圖G中所有的點個數|V|),均包含此點。本篇論文即是將此性質應用在增廣立方體上,我們提出在n維的增廣立方體上滿足vertex-pancyclic性質,而且環路的長度介於3到所有的點個數|V|,n>=2。
A graph G=(V,E) is vertex-pancyclic if for every vertex u and any integer l ranging from a positive constant L to |V|,G contains a cycle C of length l such that u is in C.In this paper,we show that an n-dimensional augmented cube,where n>=2,is vertex-pancyclic with L=3.
[1] S.Abraham and K.Padmanabhan“The twisted cube topology for multiprocessors : A study in network asymmetry,”Journal of Parallel and Distributed Computing,13:104–110,1991.
[2] ToruAraki and YukioShibata,“Pancyclicity of recursive circulantgraphs,”Informa-
tion Processing Letters,vol.81,issue4,pp.187–190,2002.
[3] J.C.Bermond,Ed.,“Interconnection Networks,”aspecial issue of Discrete Applied Mathematics,vol.37+38,1992.
[4] J.Bang-Jansen and Y.Guo,“A note on vertex pancyclic oriented graphs,”Journal
of Graph Theory,vol.31,pp.313–318,1999.
[5] L.Bhuyan and D.P.Agrawal,“Generalized hypercubes and hyperbusstructure for
a computer network,”IEEE Transactions on Computers,c.33,pp.323–333,1984.
[6] E.van Blanken,J.vanden Heuvel,and H.J.Veldman,“Pancyclicity of hamiltonian line graphs,”Discrete Mathematics,vol.138,issue1–3,pp.379–385,1995.
[7] J.A.Bondy,“Pancyclic graphs,”Journal of CombinatorialT heory-Series B,vol.11,
issue 1,pp.80–84,1971.
[8] F.B.Chedid and R.B.Chedid,“A new variation on hypercubes with smaller diameter,”Information Process Letters,vol.46,pp.275–280,1993.
[9] S.A.Choudum and V.Sunitha,“Augmented cubes,”Networks,vol.40,no.2,pp.71–84,2002.
[10] Jianxi Fan,“Hamiltonian-connectivity and cycle-embedding of the Mobius cubes,”
Information Processing Letters,vol.82,pp.113–117,2002.
[11] Jianxi Fan,Xiaola Lin,and Xiaohua Jia,“Node-pancyclicity and edge-pancyclicity
of crossed cubes,”Information Processing Letters,vol.93,pp.133–138,2005.
[12] F.Harary,Graph Theory,Addison-Wesley,Massachusetts,1972.
[13] P.A.J.Hilbers,M.R.J.Koopman,and J.L.A.van de Snepscheut,“The twisted cube,”Parallel Architectures and Languages Europe,Volume I:Parallel Architectures,Eindhoven,The Netherlands,June15–19,1987,Proceedings,pp.152–159,1987.
[14] D.F.Hsu,“Interconnection Networks and Algorithms,”a special issue of Networks,
vol.23,no.4,1993.
[15] H.C.Hsu,L.C.Chiang,J.M.Tan,and L.H.Hsu,“Fault hamiltonicity of augmented
cubes,”Parallel Computing,vol.31,pp.131-145,2005.
[16] W.T.Huang,W.K.Chen,and C.H.Chen,“Pancyclicity of Mobius cubes”,in
Proceedings of the 9th International Conference on Parallel and Distributed Systems(ICPADS'02),pp.591–596,2002.
[17] M.Kouider and A.Marczyk,“On pancyclism in hamiltonian graphs,”Discrete Mathematics, vol.251,issue1–3,pp.119–127,2002.
[18] F.T.Leighton,Introduction to Parallel Algorithms and Architecture: Arrays,Trees, Hypercubes,Morgan Kaufmann,SanMateo,CA,1992.
[19] B.Randerath,I.Schiermeyer,M.Tewes,and L.Volkmann,“Vertex pancyclic graphs,”Discrete Applied Mathematics,vol.120,issue1–3,pp.219–237,2002.
[20] D.Wang,“Embedding hamiltonian cycles into folded hypercubes with faultylinks,”
Journal of Parallel and Distributed Computing, vol.61,pp.545–564,2001.
[21] Junming Xu, Topological Structure and Amalysis of Interconnection Networks,
Kluwer Academic Publishers,2001.