簡易檢索 / 詳目顯示

研究生: 巫泓憲
Wu, Hung-Hsien
論文名稱: 具自適電感電流峰值及趨近臨界電壓啟動之脈波頻率調變控制升壓型轉換器設計
Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 65
中文關鍵詞: 低壓啟動升壓直流-直流轉換器
外文關鍵詞: Near-Threshold Startup, Boost, DC-DC Converter
相關次數: 點閱:179下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出一隨輸入電壓改變而自動調整電感電流峰值、並以脈波頻率調變方式控制之升壓型轉換器,其主要是應用於低壓及綠能電子產品,因此晶片的耗能及最低啟動電壓,便為設計此電路時之兩項最重要的考量。此晶片使用台灣積體電路公司 0.18μm 1P6M 混和訊號製程製作,並以 24 S/B 封裝。此外,本電路提出一新的兩階段啟動流程,其使得此系統可於輸入電壓為 0.43 V 時啟動。此轉換器輸出電壓固定為 1.8V ,其負載電流範圍為0-50 mA。

    A boost DC-DC converter with adaptive peak inductor current and pulse-frequency modulation is proposed. It is meant to be used in low-power and/or green power applications. Hence, the chip power consumption and startup voltage are two most important considerations. The proposed converter was fabricated by using the TSMC 0.18μm 1P6M mixed-signal process. Besides, a novel two-step startup procedure was proposed and applied on the boost converter, and it is capable to startup successfully with a 0.43 V input voltage. The loading current of the converter may range from 0 to 50 mA with its output voltage setting at 1.8 V.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Fundamentals of Switching Regulator 3 2.1 Specifications of Switching Regulator 3 2.1.1 Input Voltage Range and Output Voltage 3 2.1.2 Output Voltage Ripple 3 2.1.3 Regulation 3 2.1.4 Transient Response 5 2.1.5 Efficiency 7 2.2 Operation Mode 8 2.2.1 Continuous Conduction Mode (CCM) 8 2.2.2 Discontinuous Conduction Mode (DCM) 11 2.3 Modulation Techniques 14 2.3.1 Pulse Width Modulation 14 2.3.2 Pulse Skipping Modulation 15 2.3.3 Pulse Frequency Modulation 16 Chapter 3 Block Diagram and Circuit Design 18 3.1 Block Diagram 18 3.1.1 Power Stage 19 3.1.2 Reference Voltage Generator 19 3.1.3 Comparator 22 3.1.4 Supply Voltage Selector 23 3.1.5 DCM Detector 25 3.1.6 PFM Controller 26 3.1.7 Dead-time Controller 28 3.1.8 Anti-ringing Circuit 29 3.2 System Procedure 30 3.2.1 Initial States 30 3.2.2 Closed-loop States 32 Chapter 4 Simulation Results and Layout Consideration 33 4.1 Simulation Results 33 4.1.1 Simulation of Subcircuits 33 4.1.2 Whole System Simulation 38 4.1.3 Loading Change Simulation 41 4.2 Layout 45 4.2.1 Layout Consideration 46 4.2.2 Bonding Diagram 47 Chapter 5 Measurement Results 48 5.1 Measurement Environment 48 5.2 Measurement Consideration 49 5.3 Measured Results 50 5.3.1 Startup and Steady-State Waveforms 50 5.3.2 Load Change 55 5.3.3 Load Regulation 58 5.3.4 Line Regulation 59 5.3.5 Efficiency 59 5.4 Specifications 60 5.5 Comparison 62 Chapter 6 Conclusion and Future Work 63 References 64

    [1] Y. C. Hsu, “A boost converter with wide input voltage range and low startup voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Aug. 2011.
    [2] Y. T. Wong, C. W. Ng, H. M. Wan, K. K. Kwong, Y. H. Lam, and W. H. Ki, “Near-threshold startup integrated boost converter with slew rate enhanced error amplifier,” in proc. IEEE Int. Symp. Circuits Syst., 2009, pp. 2409-2412.
    [3] B. Sahu and G. A. Rincón-Mora, “An accurate, low voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312-321, Feb. 2007.
    [4] E. Rogers. (1999, Mar.). Understanding Boost Power Stages in Switchmode Power Supplies [Online]. Available: http://www.ti.com/lit/an/slva061/
    slva061.pdf
    [5] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically integrated boost converter based on 0.5-μm CMOS process,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 628-638, May 2005.
    [6] C. Y. Leung, P. K. T. Mok, and K. N. Leung, “A 1-V Integrated Current-Mode Boost Converter in Standard 3.3/5-V CMOS Technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265-2274, Nov. 2005.
    [7] T. Y. Man, P. K. T. Mok, and M. J. Chan, “A 0.9-V input discontinuous-conduction-mode boost converter with CMOS-control rectifier,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2036-2046, Sep. 2008.
    [8] K. N. Leung and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 526–530, Apr. 2002.
    [9] H. M. Chen, R. C. Chang, and J. L. Wu “A low-voltage integrated current-mode boost converter for portable power supply,” in proc. IEEE Int. Conf. Electron. Circuits Syst., 2007, pp. 1316-1319.
    [10] C. L. Huang, “Low voltage, zero quiescent current PFM boost converter for battery-operated devices,” M.S. thesis, Dept. of Elect. Eng., National Chung Hsing Univ., Taichung, Taiwan, R.O.C., Jul. 2006.
    [11] F. F. Ma, “Advanced control and protection techniques for DC-DC switched mode power supply IC design,” Ph.D. dissertation, Dept. of Elect. Eng., National Chiao Tung Univ., Hsinchu, Taiwan, R.O.C., Jul. 2007.
    [12] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.
    [13] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford, 2010.
    [14] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [15] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.

    下載圖示 校內:2017-08-30公開
    校外:2017-08-30公開
    QR CODE