簡易檢索 / 詳目顯示

研究生: 林曉萱
Lin, Shiao-Syuan
論文名稱: 泥砂粒徑對輸砂模擬之影響分析
Analysis of the Effects of Sediment Size on the Sediment Transport Simulation
指導教授: 詹錢登
Jan, Chyan-Deng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 泥砂粒徑捲增沉降懸浮載濃度
外文關鍵詞: sediment size, entrainment, deposition, suspended sediment concentration
相關次數: 點閱:75下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風暴雨期間是輸砂的主要時期,大部分河流輸砂運移以懸浮載為主,因此有必要掌握及瞭解洪水期間之懸浮載濃度資料。若能藉由數學模式推估懸浮載濃度,將可有助於資料的補強及便利性。各數學模式中的泥砂粒徑大小會直接影響到泥砂相關參數,進而影響懸浮載濃度的演算,因此選擇適合之計算代表泥砂粒徑代入模式演算為一重要課題。
    本研究以假設大自然中會傾向於沖淤平衡之狀態下,藉由當土砂之捲增及沉降量兩者相等時視為沖淤平衡,透過不同的坡度及水深變化,討論泥砂粒徑對於土砂捲增及沉降率之影響,並找出沖淤平衡時之泥砂粒徑範圍,訂定此粒徑為計算代表粒徑,最後代入地文性土壤沖淤模式中演算懸浮載濃度,以符合實測之懸浮載濃度資料為目標,驗證討論所選定之計算代表粒徑的合理性;並以曾文水庫集水區為本研究案例分析之地點。
    結果顯示,比起捲增率,沉降率有較敏感的情形,不僅只針對於粒徑,坡度及水深的變動,都會使沉降率較捲增率敏感。透過找出沖淤平衡時之泥砂粒徑,訂定此粒徑為曾文水庫集水區之計算代表泥砂粒徑,經過分析後代表的河道粒徑範圍落於20 ~70 mm之間,而最後根據相關規劃報告書現地採樣之資料,採用特徵粒徑45.68 mm;坡地粒徑範圍則落於0.3 ~ 1.3 mm之間,因缺乏實際採樣之粒徑資料,因此直接各別代入模式演算;模擬之流量與懸浮載輸運率之率定曲線與實測比較,結果仍屬合理;顯示可透過此方法找出集水區之計算代表粒徑。

    The period of typhoons and storms is the main period of sediment transport, which in most of the rivers gives priority to suspended load, therefore, it is necessary to grasp and understand the data of suspended sediment concentration in the flood period. If the suspended sediment concentration is estimated by the mathematical model, it will facilitate the reinforcement and convenience of the data. The sediment size in various mathematical models will directly affect the parameters related to the sediment particle. It will also affect the calculation of the suspended sediment concentration. Therefore, it is an important topic to select the appropriate introduction model of calculation representative sediment size to perform calculations.
    In this study, it is assumed that the watershed would tend to be a balance of sediment erosion and deposition, by which is deemed when the sediment entrainment rate is equal to the deposition rate, through a variety of slopes and changes of water level, we can discuss the impact of sediment size on sediment entrainment rate and deposition rate, and find out the range of sediment size in the balance of sediment erosion and deposition; then this size is set to the calculation representative size, and finally introduced into the physiographic soil erosion–deposition model (PSED model) to calculate the suspended sediment concentration. Based on the data of suspended sediment concentration measured, the rationality of the calculation representative size selected is verified and discussed; on the other hand, Tseng-Wen Watershed is selected as the location for the analysis in this case study.
    The result shows that, the deposition rate tends to be more sensitive when it is compared with the entrainment rate; besides the sediment size, the changes of the slope and the water level can also make the deposition rate more sensitive than the entrainment rate. Through finding out the sediment size in the balance of sediment erosion and deposition, the size is set to the calculation representative sediment size of the Tseng-Wen Watershed; through the analysis, the representative size range of river in the Tseng-Wen Reservoir Watershed is between 20~70 mm; finally, according to the field sampling data of relevant planning reports, the median diameter of 45.68 mm is adopted; while the size range of the slope is between 0.3~1.3 mm, since the size range data actually sampled is lacked, they can be individually and directly introduced into the model to perform calculations. After the comparison between the rating curve of discharge and suspended load sediment transport rate with the actual measurement and with simulated data, the results are reasonable, which indicates that the calculation representative sediment size of watershed can be found out by this method.

    摘要......I Abstract......II 誌謝......IV 目錄......V 表目錄......VII 圖目錄......VIII 第一章 緒論......1 1-1 前言及目的......1 1-2 文獻回顧......2 1-2-1土砂生產量推估相關模式......2 1-2-2地文性土壤沖淤模式......4 1-2-3捲增及沉降相關研究......7 1-3 本文組織......9 第二章 泥砂捲增率及沉降率之探討......10 2-1 泥砂捲增率及沉降率方程式......10 2-2 案例分析對象......11 2-2-1地形......12 2-2-2地質與土壤......13 2-2-3氣候......15 2-3颱風事件分析......16 2-4 地文性土壤沖淤模式之格網劃分......19 2-5 探討粒徑對捲增率及沉降率之影響......22 2-5-1坡度變化影響粒徑......24 2-5-2水深變化影響粒徑......28 2-5-3選定計算代表粒徑......32 第三章 案例模擬分析......34 3-1 柯羅莎颱風事件......35 3-2 聖帕颱風事件......38 第四章 結論與建議......41 4-1 結論......41 4-2 建議......42 參考文獻......43 附錄A 地文性土壤沖淤模式......46 A-1 模式介紹......46 A-2模式建立......46 A-2-1水流演算......46 A-2-2土壤沖淤演算......49 A-3模式演算流程......55

    1.中華水土保持學會,「石門水庫集水區治理效益評鑑」,台灣省石門水庫管理局,1989。
    2.李亮廷,「集水區降雨特性、溪流流量及輸砂量變異分析─以陳有蘭溪流域為例」,國立成功大學水利及海洋工程研究所碩士論文,2008。
    3.李振裕,「集水區水砂生產及輸送之整合研究」,國立成功大學水利及海洋工程研究所碩士論文,2004。
    4.李鎮鍵、林昂、蔡元融,「莫拉克颱風引發土砂問題之研究─以曾文水庫集水區為例」,中華防災學刊,第二卷,第一期,第51-58頁,2010。
    5.沈少文,「1970-2008年花蓮地區河川流量與輸砂量之頻率分析」,水保技術,第五卷,第三期,第152-166頁,2010。
    6.阮香蘭,「石門水庫集水區之河相與輸砂特性之研究」,國立中興大學水土保持學系碩士論文,1992。
    7.林孟龍,「颱風對蘭陽溪上游集水區懸移質生產特性的影響」,國立臺灣大學地理學研究所碩士論文,2000。
    8.林俐玲,「覆蓋管理因子(C值)之評定」,中美陡坡地土壤流失量推估技術研究論文集,1995。
    9.胡蘇澄、盧昭堯、吳益裕、陳台芳,「台灣中部蓮華池地區高粘土含量土壤之紋溝間沖蝕率」,林業試驗所研究報告季刊,第十卷,第一期,第 33-40頁,1995。
    10.徐碧治,「降雨特性對洪水懸浮載濃度與懸浮載產砂量影響之研究」,國立成功大學水利及海洋研究所博士論文,2011。
    11.馬明明,「台灣中部與台北地區降雨特性及沖蝕性關係之研究」,國立中興大學土木工程學系碩士論文,1995。
    12.張明軒,「集水區輸砂量變化與沖積物預算之分析」,國立臺灣大學地理境資源研究所碩士論文,2005。
    13.張瑞瑾、謝鑒衡、王明甫、黃金堂,「河流泥沙動力學」,水利電力出版社,武漢水利電力學院,1988。
    14.梁惠儀、許振昆、林伯勳、鄭錦桐、冀樹勇,「極端暴雨事件於石門水庫集水區之土壤沖蝕量估算及探討」,中興工程季刊,第一百零六期,第5-15頁,2010。
    15.陳金諾,「洪水對河道沖淤及棲地影響之研究」,國立成功大學水利及海洋研究所博士論文,2006。
    16.陳建豪,「曾文水庫大埔水文站流量之研究」,國立成功大學水利及海洋研究所碩士論文,2007。
    17.陳昱豪,「集水區泥砂產量推估及崩塌地植生復育率之研究」,國立中興大學水土保持學系碩士論文,2006。
    18.陳翰霖、張瑞津,「曾文溪流域豪大雨事件的流量及輸砂量」,地理學報,第四十八期,第43-65頁,2007。
    19.陳薔諾、蔡智恆、蔡長泰,「地文性土壤沖淤模式與通用土壤流失公式於集水區土壤沖蝕量和產砂量之模擬及比較」,台灣水利季刊,第五十一卷,第三期,第33-46頁,2003。
    20.陳麗貞,「沖積平原之洪水沖淤模擬」,國立成功大學水利及海洋研究所碩士論文,2010。
    21.黃宏斌,「遮蔽效應對混合粒徑輸砂量之影響探討」,農業工程學報,第五十四卷,第二期,第71-80頁,2008。
    22.黃建智,「流域集水區非點源污染模式之研究」,國立成功大學環境工程學系碩士論文,2002。
    23.黃重育,「潟湖對排水路排水能力影響之研究」,國立成功大學水利及海洋研究所碩士論文,2007。
    24.經濟部水利署水利規劃試驗所,「水庫水理、水質、泥沙量測及運移機制分析」,2005。
    25.經濟部水利署南區水資源局,「96年度曾文水庫集水區土地利用及保育防災監測計畫」,2007。
    26.經濟部水利署南區水資源局,「曾文水庫集水區整體治理規畫」,2007。
    27.歐陽元淳,「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,台灣大學地理環境資源研究所碩士論文,2003。
    28.蔡長泰、蔡智恆,「梯形寬頂堰堰流公式適用性之研究」,台灣水利季刊,第四十五卷,第二期,第 29-45頁,1997。
    29.錢寧、萬兆惠,「泥沙運動力學」,第三版,科學出版社,新華書店,北京,1991。
    30.謝佳玲,「不同土壤沖蝕模式推估土壤流失量之比較」,國立中興大學水土保持學系碩士論文,1998。
    31.簡鉦哲,「地文性土壤沖淤模式之研究」,國立成功大學水利及海洋研究所碩士論文,2001。
    32.Cao, Z. X., “Turbulent bursting-based sediment entrainment function,” J. Hydraul. Eng., Vol. 123, No. 3, pp. 233-236., 1997.
    33.Itakura, T., Kishi, T., “Open channel flow with suspended sediments,” Journal of the Hydraulics Division, ASCE, Vol. 106, No. HY8, pp. 1325-1343, 1980.
    34.Lee, D. Y., Lick, W. and Kang, S. W., “The entrainment and deposition of fine-grained sediments in Lake Erie,” J. Great Lakes Res., Vol. 7, pp.264-275., 1981.
    35.Liu, W. C., Hsu, M. H., and Kuo, A. Y., “Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan,” Marine Pollution Bulletin 44, pp.1076-1088, 2002.
    36.Meyer, L. D., “How rain intensity affects interrill erosion,” Transactions, ASAE, pp. 1472-1475, 1981.
    37.Mutchler, C.K. and Young, R.A., “Soil detachment by raindrops,” Proceedings of sediment-yield workshop, ARS-S-40, USDA, 1980.
    38.Sharma, P. P., Gupta, S. C. and Foster, G. R., “Raindrop-induced soil detachment and sediment transport from interrill areas,” Soil Science Society America Journal, Vol. 59, pp. 727-734, 1995.
    39.Shimizu, Y., Yamaguchi, H. and Itakura, T., “Three-Dimensional computation of flow and bed deformation,” Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 9, pp. 1090-1108, 1990.
    40.Tasi, C. H. and Tasi, C. T., “Velocity and concentration distributions of sediment-laden open channel flow,” Journal of the America Water Resources Association, Vol. 36, No. 5, pp. 1075-1086, 2000.
    41.Zhong D.Y., Wang G.Q., and Ding Y., “Bed sediment entrainment function
    based on kinetic theory, ” Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 2, pp. 222-233., 2011.

    下載圖示 校內:2014-07-31公開
    校外:2014-07-31公開
    QR CODE