簡易檢索 / 詳目顯示

研究生: 許棨
Hsu, Chi
論文名稱: 應用於太陽能光伏系統之單開關諧振型高昇壓轉換器
A High Step-up Resonant Converter with Single Switch for Photovoltaic Applications
指導教授: 楊宏澤
YANG, HUNG-TZE
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 光伏電池高升壓漣波電流諧振槽
外文關鍵詞: Photovoltaic, High Step-Up, Current Ripple, Resonant Tank
相關次數: 點閱:125下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於近期光伏製造成本與銷售價格下降,使光伏發電併網系統市場快速成長。為有效利用太陽能資源並避免模組間特性不匹配與局部遮蔽問題,整合式模組轉換器近年來被廣泛地探討與研究。
    因此,本論文提出一具高升壓比、低成本與高效率之轉換器應用於低輸入漣波電流與高可靠度的再生能源系統。藉由變壓器為基礎之升壓模組,轉換器之開關應力可有效減少,且能量將被回收進而達到電壓箝位與升壓之目的,因此,轉換器可以選用低導通電阻的開關來減少導通損與元件成本。並且,利用變壓器的漏感可有效地減緩二極體的逆向回復的問題。此外,閉迴路控制也被探討應用進而提升系統穩定度與健全性。
    本論文詳述轉換器的模式分析、元件應力與諧振槽設計,並實際製作一額定功率300W、輸入電壓30到4V,輸出電壓400 V的雛型系統驗證本論文所提電路架構之可行性。

    Over the past several decades, the manufacturing costs and sales prices of the photovoltaic (PV) modules have dropped dramatically, while the PV grid-connected power system has become a fast growing market. In order to utilize the photovoltaic energy more effectively, an up-to-date approach to avoid the mismatch issues and increase the energy harvested under partial-shading conditions, especially for roof-top PV systems is using module-integrated converter.
    In this thesis, a high step-up, low-cost, low input-current ripple, and high-efficiency module-integrated converter is proposed for PV power generation system. By employing the transformer-assisted auxiliary voltage step-up cell, the voltage stress of the main power switch can be reduced. The stray energy can also be recycled to achieve both the voltage-clamp and step-up objectives. Therefore, the low-voltage rated MOSFETs with low RDS_ON can be used to reduce the conduction losses and minimize the cost. In addition, the reverse-recovery problem of the diodes is alleviated effectively by using the leakage inductance. Furthermore, the closed-loop control is designed to enhance the stability and robustness of the proposed circuit.
    The operation principles, voltage stress analyses, resonant tank design guidelines are discussed in detail in the thesis. Finally, a laboratory prototype circuit of 300 W, 400 V output voltage with input voltage ranging from 30 to 42 V is implemented to verify the effectiveness of the proposed converter.

    摘 要...I ABSTRACT...II 誌 謝...III LIST OF TABLES...VII LIST OF FIGURES...VIII CHAPTER 1. INTRODUCTION...1 1.1. Backgrounds and motivations...1 1.2. Literature review...3 1.3. Research objectives and method...6 1.4. Organization of the thesis...7 CHAPTER 2. REVIEW OF SINGLE SWITCH HIGH STEP-UP DC-DC CONVERTERS...8 2.1. Conventional boost converter...8 2.2. Existing high step-up boost converter...11 2.2.1. Boost converter with cascade technique...11 2.2.2. Boost converter with voltage-lift technique...13 2.2.3. Boost converter with switched-capacitor technique...15 2.2.4. Boost converter with coupled-inductor technique...17 2.2.5. Boost converter with output-voltage stacking technique...20 2.2.6. Boost converter with transformer-assisted technique...22 2.3. Summary...23 CHAPTER 3. THE PROPOSED HIGH STEP-UP CONVERTER...24 3.1. The proposed high step-up converter...24 3.2. Operating principles of the proposed converter...25 3.3. Analysis and design of the proposed converter...41 3.3.1. Voltage gain expression...41 3.3.2. Voltage stress analysis...44 3.3.3. Diode reverse-recovery alleviation...45 3.3.4. Transformer turns ratio and duty cycle...46 3.3.5. Resonant tank design...48 3.3.6. Input inductor design...50 3.3.7. Capacitor design...50 3.4. Analysis and control of the proposed converter...51 3.4.1. Analysis of the proposed converter...51 3.4.2. Control of the proposed converter...53 3.5. Summary...61 CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS...62 4.1. Specifications of the proposed prototype circuit...62 4.2. Experimental verification...65 4.2.1. Feedback circuit...65 4.2.2. Switch driver circuit...66 4.2.3. Simulation and experimental results...67 4.2.4. Power losses analysis...85 4.2.5. Thermal performance...86 4.3. Summary...90 CHAPTER 5. CONCLUSIONS...91 5.1. Summary...91 5.2. Future works...93 REFERENCES...94

    [1]Renewable Energy Technologies: Cost Analysis Series, International Renewable Energy Agency (IRNA), vol. 1, no. 4, June 2012.
    [2]W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.
    [3]H. Chiu, Y. Lo, C. Yang, S. Cheng, C. Huang, M. Kou, Y. Huang, Y. Jean, and Y. Huang, “A module-integrated isolated solar micro-inverter,” IEEE Trans. Power Electron., vol. 60, no. 2, pp. 781–788, Feb. 2013.
    [4]S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind.Appl., vol. 41, no. 5, pp. 1292–1306, Sep./Oct. 2005.
    [5]S. Chen, T. Liang, L. Yang, and J. Chen, “A safety enhanced, high step-up DC/DC converter for AC photovoltaic module application,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1809–1817, Apr. 2012.
    [6]Z. Liang, R. Guo, J. Li, and A. Q. Huang, “A high-efficiency PV module integrated DC/DC converter for PV energy harvest in FREEDM systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 897–909, Mar. 2011.
    [7]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, Kluwer Academic Publishers, 2001.
    [8]L. Huber and M. M. Jovanovic, “A design approach for server power supplies for networking applications,” in Proc. IEEE INTELEC, 2000, pp. 1163–1169.
    [9]B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching converter with high-voltage conversion ratio,” Proc. IET Trans. Power Electron., vol. 1, no. 3, pp. 386–394, Sep. 2008.
    [10]M. G. Ortiz-Lopez, J. Leyva-Ramos, E.E. Carbajal-Gutierrez, and J.A. Morales-Saldana. ” Modeling and analysis of switch-mode cascade converters with a single active switch” in IET Trans. Power Electron., vol. 1, no. 4, pp. 478-487, Dec. 2008.
    [11]J. Leyva-Ramos, M.G.Ortiz-Lopez, L.H.Diaz-Saldierna, and J.A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide DC conversion ratios,” IET Power Electron., vol. 2, no. 5, pp. 605–613, Sep. 2009.
    [12]S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A cascaded high step-up dc–dc converter with single switch for microsource applications,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1146–1153, Apr. 2011.
    [13]K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. IEE Electric Power Appl., vol. 151, no. 2, pp. 182-190, Mar. 2004.
    [14]F. L. Luo, “Six self-lift DC–DC converters, voltage lift technique,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
    [15]F. L. Luo and H. Ye, “Positive output super-lift converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 105-113, Jan. 2003.
    [16]F. L. Luo and H. Ye, “Positive output multiple-lift push–pull switched-capacitor Luo-converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 594-602, Jun. 2004.
    [17]E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. Circuits and Sys. I, vol. 55, no. 4, pp. 1159–1171, May 2008.
    [18]S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Step-up DC–DC converter by coupled inductor and voltage-lift technique,” IET Power Electron., vol. 3, no. 3, pp. 369–378, May 2010.
    [19]S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, “Novel high step-up DC–DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2007-2017, June 2010.
    [20]T. J. Liang, J. H. Lee, S. M. Chen, J. F. Chen, and L. S. Yang, “Novel isolated high step-up DC–DC converter with voltage lift” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1483-1491, Apr. 2013.
    [21]B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits and Systems I, vol. 55, no. 2, pp. 687-696, Mar. 2008.
    [22]E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio
    dc–dc converters with reduced switch stress,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 2139–2151, Aug. 2008.
    [23]O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit,” IEEE Trans. Circuits and Systems I, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
    [24]Fan Zhang, Lei Du, Fang Zheng Peng, and Zhaoming Qian, “A new design method for high-power high-efficiency switched-capacitor dc–dc converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 832-840, Mar. 2008.
    [25]D. K. W Cheng, X. C. Liu, and Y. S. Lee, “A new improved boost converter with ripple free input current using coupled inductors,” in Proc. IEE Int. Conf. on Power electronics and variable speed drives, pp. 592–599, 1998.
    [26]E. J. Copple and A. Heights, “High Efficiency DC Step-up Voltage Converter,” U.S. Patent 5 929 614, July 27, 1999.
    [27]Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc–dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
    [28]R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
    [29]R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High efficiency DC-DC converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 354–364, Feb. 2007.
    [30]L. S. Yang, T. J. Liang, H. C. Lee, and J. F. Chen, “Novel high step-up dc–dc converter with coupled-inductor and voltage-doubler circuits,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4196–4206, Sep. 2011.
    [31]W. Li, Y. Zhao, J. Wu, and X. He, “Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 133–143, Jan. 2012.
    [32]S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A boost converter with capacitor multiplier and coupled inductor for ac module applications,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1503-1511, Apr. 2013.
    [33]S. M. Chen, T. J. Liang, and K. R. Hu, “Design, analysis, and implementation of solar power optimizer for DC distribution system” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1764-772, Apr. 2013.
    [34]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A novel high step-up dc–dc converter for a microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.
    [35]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Analysis and implementation of a novel single-switch high step-up dc-dc converter,” IET Power Electron., vol. 5, no. 1, pp. 11–21, Jan. 2012.
    [36]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-up dc–dc converter for distributed generation system,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1473–1482, Apr. 2013.
    [37]T. J. Liang, S. M. Chen, L. S. Yang, J. F. Chen, and A. Ioinovici, “Ultra large gain step-up switched-capacitor DC-DC converter with coupled inductor for alternative sources of energy,” IEEE Trans. Circuits Syst. I, vol. 59, no. 4, pp. 864–874, Apr. 2012.
    [38]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 998–1007, Feb. 2012.
    [39]J. Lee, J. Park, and H. Jeon, “Series-connected forward-flyback converter for high step-up power conversion,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3629–3641, Dec. 2011.
    [40]Y. Deng, Q. Rong, W. Li, Y. Zhao, J. Shi, and X. He, “Single-switch high step-up converters with built-in transformer voltage multiplier cell,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3557–3567, Aug. 2012.
    [41]K. B. Park, G. W. Moon, and M. J. Youn, “High step-up boost converter integrated with a transformer-assisted auxiliary circuit employing quasi resonant operation,” IEEE Trans. Power Electron., vol. 27, no. 9, pp. 1974–1984, Apr. 2012.
    [42]W. Li, X. Xiang, C. Li, W. Li, and X. He, "Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system," IEEE Trans. Power Electron., vol.28, no.1, pp.300-313, Jan. 2013.
    [43]M. M. Jovanovic and Y. Jang, “State-of-the-art, single-phase, active powerfactor-correction techniques for high-power applications – An overview,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 701–708, Jun. 2005.
    [44]L. H. Dixon, “Transformer and inductor design for optimum circuit performance,” in Proc. Unitrode Power Supply Design Seminar, 2003.
    [45]B. Y. Chen and Y. S. Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1545–1553, Mar. 2012.
    [46]C. Basso, “Transient response counts when choosing phase margin,” Power Electronics Technology, Nov. 2008.
    [47]M. Hagen and V. Yousefzadeh, "Applying Digital Technology to PWM control-loop designs", Power Supply Design Seminar SEM-1800, pp. 7.1-7.28, 2009.
    [48]J. H. Su, J. J. Chen, and D. S. Wu, "Learning feedback controller design of switching converters via Matlab/Simulink," IEEE Transactions on Education, vol. 45, no. 4, pp. 307-315, Nov. 2002.
    [49]Microchip Technology Inc, http://www.microchip.com/.

    下載圖示 校內:2018-07-16公開
    校外:2018-07-16公開
    QR CODE