簡易檢索 / 詳目顯示

研究生: 李政翰
Lee, Cheng-Han
論文名稱: 海水淡化廢鹵水提取銣銫資源之研究
Recovery of Rubidium and Cesium Resources from Brine of Desalination
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 海水淡化廢鹵水選擇性化學沉澱溶媒萃取廢棄物處理資源再生
外文關鍵詞: Brine, Rubidium, Cesium, Chemical precipitation, t-BAMBP, Solvent extraction, Recover
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對海水淡化產生之廢鹵水進行金屬資源再生研究,實驗主要分為四部分。第一部分為海水與海水淡化廢鹵水的特性分析,此步驟藉由化學組成分析做為後續研究規劃的依據,並於第二部分的除鉀程序中以加熱蒸發及選擇性化學沉澱法去除鹵水中的鈣、鎂、鉀,以形成飽和鹵水。其中,透過選擇性沉澱可減少鉀離子於溶媒萃取階段及銣銫產物析出階段造成的負面影響。此步驟最佳參數為添加過氯酸於鹵水中,且調整pH值至pH 2,使過氯酸鉀沉澱率達到98.5%。
    第三部分為金屬分離純化,主要方法為透過溶媒萃取進行金屬分離,並使用分離係數(Separation factor)、分配比(Distribution ratio)及萃取效率做為指標數據。實驗首先利用t-BAMBP進行第一階段萃取,使銫被選擇性萃取至有機相中,鋰、鈉、鉀、鈣、鎂、銣則留在水相,有機相中銫離子再藉由氨水反萃取至水溶液中。第二階段萃取仍使用t-BAMBP及氨水進行萃取與反萃取,將銣與鋰、鈉、鉀、鈣、鎂分離。透過兩階段溶媒萃取不僅可將銣、銫與雜質分離,也能使物理化學性質相近的銣、銫於後續步驟單獨形成化合物。此階段,銫的萃取及反萃取效率分別為:99.9%及97.8%;銣的萃取及反萃取效率則為:98.3%及95.1%。
    第四部分為銣、銫產物析出。由於銣、銫化合物中,氯化銣及氯化銫具有高穩定性及高應用價值,因此本研究透過添加鹽酸於銣、銫反萃取液至pH 7,再經由減壓濃縮法來獲取氯化銣及氯化銫。兩者純度分別為:98.1%及99.0%。

    50 billion cubic meters of brine every year makes ecological hazards to the environment and makes us need to reduce it. In this experiment, the main impurities which needed to be eliminated in brine were lithium, sodium, potassium, calcium and magnesium. In the procedure, brine was evaporated first to turn into saturated brine. Perchloric acid was then added into saturated brine to precipitate potassium perchlorate which could reduce the influence of potassium in the extraction procedure. After that, t-BAMBP and ammonia were separately used as extractant and stripping agent in the extraction procedure and stripping procedure to get rubidium hydroxide solutions and cesium hydroxide solutions. Subsequently, they reacted with hydrochloric acid to get rubidium chloride and cesium chloride. In a nutshell, this study mainly shows the optimal parameters of pH value to precipitate potassium perchlorate. Besides, solvent extraction step about pH value in the system, the concentration of t-BAMBP and ammonia, O/A ratio, reaction time and reaction temperature were also investigated to get the purities about 98.1% and 99.0% of rubidium chloride and cesium chloride.

    中文摘要 I Recovery of Rubidium and Cesium Resources from Brine of Desalination II 誌謝 VII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1海水淡化廢鹵水與銣銫資源現況概述 4 2.1.1海水淡化廢鹵水 4 2.1.2銣之性質及資源現況 6 2.1.3銫之性質及資源現況 8 2.2資源化與冶金技術 10 2.2.1濕法冶金 10 2.2.2海水淡化廢鹵水有價金屬資源化技術 14 2.3海水淡化廢鹵水金屬分離純化理論 16 2.3.1選擇性化學沉澱法 16 2.3.2溶媒萃取法 17 2.3.2.1萃取與反萃取 17 2.3.2.2萃取劑與稀釋劑 17 2.3.2.3萃取理論與效率計算 22 2.3.2.4反萃取理論與效率計算 23 第三章 實驗方法與步驟 24 3.1實驗材料 24 3.1.1實驗樣品 24 3.1.2實驗藥品 24 3.2實驗架構 26 3.3實驗流程 27 3.3.1海水與海水淡化廢鹵水特性分析 27 3.3.2除鉀程序 27 3.3.3溶媒萃取 27 3.3.4金屬產物析出 31 3.4實驗設備及儀器 32 第四章 結果與討論 35 4.1海水與海水淡化廢鹵水特性分析 35 4.1.1海水與廢鹵水元素分析 35 4.2除鉀程序 36 4.3金屬分離純化-溶媒萃取 38 4.3.1溶媒萃取-萃取及反萃取銫 38 4.3.2溶媒萃取-萃取及反萃取銣 48 4.3.3溶媒萃取小結 58 4.4產物析出及特性分析 62 4.4.1產物析出及表面特性分析 62 4.4.2組成分析 64 4.4.3粉末結晶相分析 65 第五章 結論 66 5.1結論 66 5.2整體回收流程 68 參考文獻 69

    [1] UNESCO. (2012). The United Nations world water development report. Paris.
    [2] Wangnick, K. (2004). 2004 IDA Worldwide Desalting Plants Inventory. Gnarrenburg: Wangnick.
    [3] Kumar, A., Phillips, K., Thiel, G., Schröder, U., & Lienhard, J. (2019). Publisher Correction: Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams. Nature Catalysis, 2(3), 278-278.
    [4] 譚學余 (2013),中國鋰、銣、銫,頁49-94,北京:冶金工業出版社。
    [5] 曹勝利 (2008),濕法冶金手冊,頁1557-1575,北京:冶金工業出版社。
    [6] Kirchhoff, G., & Bunsen, R. (1861). Chemische Analyse durch Spectralbeobachtungen. Annalen Der Chemie Und Pharmacie, 118(3), 349-361.
    [7] Weeks, M. (1932). The discovery of the elements. XIII. Some spectroscopic discoveries. Journal of Chemical Education, 9(8), 1413.
    [8] W. (1903). Analysis, detection and commercial value of the rare metals. Journal of The Franklin Institute, 156(3), 239.
    [9] Mittal, V., Verma, R., & Gupta, S. (2011). Introduction to nuclear and particle physics. New Delhi: Prentice-Hall of India.
    [10] Paschalis, C., Jenner, F., & Lee, C. (1978). Effects of Rubidium Chloride on the Course of Manic-Depressive Illness. Journal of The Royal Society of Medicine, 71(5), 343-352.
    [11] Malek-Ahmadi, P., & Williams, J. (1984). Rubidium in psychiatry: Research implications. Pharmacology Biochemistry and Behavior, 21, 49-50.

    [12] Canavese, C., DeCostanzi, E., Branciforte, L., Caropreso, A., Nonnato, A., Sabbioni, E., & Canavese, M.D., C. (2001). Depression in dialysis patients: Rubidium supplementation before other drugs and encouragement?. Kidney International, 60(3), 1201.
    [13] Lake, J. (2007). Textbook of integrative mental health care. New York: Thieme.
    [14] de Angelis, L. (1988). The effects of rubidium chloride in a novel preclinical model of depression. Pharmacological Research Communications, 20, 124.
    [15] Jadvar, H., & Parker, J. (2005). Clinical PET and PET/CT. London: Springer.
    [16] Yen, C., Yano, Y., Budinger, T., Friedland, R., Derenzo, S., & Huesman, R. (1981). Brain Tumor Evaluation Using Pet and Rb-82. Clinical Nuclear Medicine, 6(Supplement), 448.
    [17] Geological Survey. (2015). Mineral commodity summaries 2015. US Govt. Printing Office.
    [18] Geological Survey. (2016). Mineral commodity summaries 2016. US Govt. Printing Office.
    [19] Geological Survey. (2017). Mineral commodity summaries 2017. US Govt. Printing Office.
    [20] Geological Survey. (2018). Mineral commodity summaries 2018. US Govt. Printing Office.
    [21] Geological Survey. (2019). Mineral commodity summaries 2019. US Govt. Printing Office.
    [22] Heiserman, D. (1992). Exploring chemical elements and their compounds. Blue Ridge Summit, PA: Tab Books.
    [23] Addison, C. (1985). The chemistry of the liquid alkali metals. Chichester: Wiley.
    [24] ESSEN, L., & PARRY, J. (1955). An Atomic Standard of Frequency and Time Interval: A Cæsium Resonator. Nature, 176(4476), 280-282.
    [25] Charrier, E., Charsley, E., Laye, P., Markham, H., Berger, B., & Griffiths, T. (2006). Determination of the temperature and enthalpy of the solid–solid phase transition of caesium nitrate by differential scanning calorimetry. Thermochimica Acta, 445(1), 36-39.
    [26] Greenwood N, Earnshaw A. (1997). Chemistry of The Elements. Oxford: Pergamon Press.
    [27] Friestad, G., Branchaud, B., Navarrini, W., & Sansotera, M. (2007). Cesium Fluoride. Encyclopedia of Reagents for Organic Synthesis.
    [28] Bick, M., Prinz, H., & Steinmetz, A. (2010). Cesium and Cesium Compounds. Ullmann's Encyclopedia of Industrial Chemistry.
    [29] Desai, M. (2010). Downstream processing of proteins. Totowa, N.J.: Humana Press.
    [30] U.S. Dept. of Interior, Bureau of Mines. (1981). Mineral facts and problems. [Washington].
    [31] Baláž, P. (2003). Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 72(1-4), 341-354.
    [32] Baláž, P., Aláčová, A., Achimovičová, M., Ficeriová, J., & Godočíková, E. (2005). Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy, 77(1-2), 9-17.
    [33] Setaro, A., Bluemmel, P., Witt, M., Narula, R., & Reich, S. (2016). Carbon nanotube chirality enrichment through chirality-selective precipitation. Physica Status Solidi (B), 253(12), 2380-2384.
    [34] Harvey, R., Hannah, R., & Vaughan, J. (2011). Selective precipitation of mixed nickel–cobalt hydroxide. Hydrometallurgy, 105(3-4), 222-228.
    [35] Mauchauffée, S., & Meux, E. (2007). Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere, 69(5), 763-768.
    [36] Chen, W., Lee, C., & Ho, H. (2018). Purification of Lithium Carbonate from Sulphate Solutions through Hydrogenation Using the Dowex G26 Resin. Applied Sciences, 8(11), 2252.
    [37] Chen, W., Chang, B., & Chen, Y. (2018). Using Ion-Exchange to Recovery of Germanium from Waste Optical Fibers by Adding Citric Acid. IOP Conference Series: Earth and Environmental Science, 159, 012008.
    [38] Shankar, S., & Venkataramani, B. (2007). Studies on Indigenous Ion Exchange Resins II: Alkaline Earth Metal Ion-hydrogen Ion Exchange Equilibria. Journal of Ion Exchange, 18(4), 250-253.
    [39] Chen, W., Liao, C., & Chang, C. (2018). Recovery of Zinc and Manganese from Spent Zn-Mn Batteries Using Solvent Extraction. Key Engineering Materials, 775, 427-433.
    [40] Chen, W., & Huang, S. (2016). The Separation of Indium and Copper from Spent Cu-In Targets. International Journal of Applied Ceramic Technology, 13(2), 274-279.
    [41] Chen, W., & Ho, H. (2018). Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. Metals, 8(5), 321.
    [42] Takeno, N. (2005). Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science and Technology.
    [43] Steven Kurniawan, Y., Rao Sathuluri, R., Ohto, K., Iwasaki, W., Kawakita, H., & Morisada, S. et al. (2019). A rapid and efficient lithium-ion recovery from seawater with tripropyl-monoacetic acid calix[4]arene derivative employing droplet-based microreactor system. Separation and Purification Technology, 211, 925-934.
    [44] Zhao, X., Yang, H., Wang, Y., & Sha, Z. (2019). Review on the electrochemical extraction of lithium from seawater/brine. Journal of Electroanalytical Chemistry, 850, 113389.
    [45] Ryu, T., Shin, J., Ghoreishian, S., Chung, K., & Huh, Y. (2019). Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite. Hydrometallurgy, 184, 22-28.
    [46] Hong, H., Ryu, T., Park, I., Kim, M., Shin, J., Kim, B., & Chung, K. (2018). Highly porous and surface-expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater. Chemical Engineering Journal, 337, 455-461.
    [47] Han, Y., Kim, S., Yu, S., Myung, N., & Kim, H. (2019). Electrospun hydrogen manganese oxide nanofibers as effective adsorbents for Li+ recovery from seawater. Journal of Industrial and Engineering Chemistry, 81, 115-123.
    [48] Ryu, T., Rengaraj, A., Haldorai, Y., Shin, J., Choe, S., & Lee, G. et al. (2017). Mechanochemical synthesis of silica-lithium manganese oxide composite for the efficient recovery of lithium ions from seawater. Solid State Ionics, 308, 77-83.
    [49] Li, X., Mo, Y., Qing, W., Shao, S., Tang, C., & Li, J. (2019). Membrane-based technologies for lithium recovery from water lithium resources: A review. Journal of Membrane Science, 591, 117317.

    [50] Um, N., & Hirato, T. (2014). Precipitation behavior of Ca(OH)2, Mg(OH)2, and Mn(OH)2 from CaCl2, MgCl2, and MnCl2 in NaOH-H2O solutions and study of lithium recovery from seawater via two-stage precipitation process. Hydrometallurgy, 146, 142-148.
    [51] Maaz, M., Elzein, T., Barroca-Aubry, N., Simoni, E., Costa, L., Nsouli, B., & Roger, P. (2019). New insights on Uranium recovery from seawater and aqueous media. Applied Materials Today, 100461.
    [52] Guo, X., Yang, H., Liu, Q., Liu, J., Chen, R., & Zhang, H. et al. (2019). A chitosan-graphene oxide/ZIF foam with anti-biofouling ability for uranium recovery from seawater. Chemical Engineering Journal, 382, 122850.
    [53] Wongjaikham, W., Wongsawaeng, D., Hosemann, P., Kanokworakan, C., & Ratnitsai, V. (2018). Enhancement of uranium recovery from seawater using amidoximated polymer gel synthesized from radiation-polymerization and crosslinking of acrylonitrile and methacrylic acid monomers. Journal of Environmental Chemical Engineering, 6(2), 2768-2777.
    [54] Su, S., Che, R., Liu, Q., Liu, J., Zhang, H., & Li, R. et al. (2018). Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids and Surfaces A: Physicochemical And Engineering Aspects, 547, 73-80.
    [55] Zhang, F., Zhang, H., Chen, R., Liu, Q., Liu, J., & Wang, C. et al. (2019). Mussel-inspired antifouling magnetic activated carbon for uranium recovery from simulated seawater. Journal of Colloid and Interface Science, 534, 172-182.
    [56] Li, P., Wang, J., Wang, Y., Liang, J., He, B., & Pan, D. et al. (2019). Photoconversion of U(VI) by TiO2: An efficient strategy for seawater uranium extraction. Chemical Engineering Journal, 365, 231-241.
    [57] Bai, Z., Liu, Q., Zhang, H., Liu, J., Chen, R., & Yu, J. et al. (2019). Mussel-inspired anti-biofouling and robust hybrid nanocomposite hydrogel for uranium extraction from seawater. Journal of Hazardous Materials, 381, 120984.
    [58] Wu, H., Chi, F., Zhang, S., Wen, J., Xiong, J., & Hu, S. (2019). Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Microporous and Mesoporous Materials, 288, 109567.
    [59] Chaudhary, M., Singh, L., Rekha, P., Srivastava, V., & Mohanty, P. (2019). Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine. Chemical Engineering Journal, 378, 122236.
    [60] 蔣穎 (2014),t-BAMBP的合成及其副產物的銣銫萃取性能研究,中南大學冶金與環境學院碩士論文。
    [61] 寶阿敏 (2018),鹽湖鹵水中低濃度銣(銫)的分離提取研究,中國科學青海鹽湖研究所博士論文。
    [62] Liu, S., Liu, H., Huang, Y., & Yang, W. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. Transactions of Nonferrous Metals Society of China, 25(1), 329-334.
    [63] 孟素青、李瑞琴、丁建躍、管洪佩 (2013),萃取法(t-BAMBP)提取鹵水中銣、銫及其影響因素分析,中國井礦鹽,第四十四卷第六期,頁12-14。
    [64] Wang, J., Che, D., & Qin, W. (2015). Extraction of rubidium by t-BAMBP in cyclohexane. Chinese Journal of Chemical Engineering, 23(7), 1110-1113.
    [65] 張明、孫梅春、孫師根、舒啟溢 (2006),從提鋰廢渣中回收銣和銫的方法,江西東鵬新材料有限責任公司。

    [66] Kokare, B., Mandhare, A., & Anuse, M. (2010). Liquid - Liquid Extraction of Cerium(IV) from Salicylate Media Using N-7V-octylaniline in xylene as An Extractant. Journal of The Chilean Chemical Society, 55(4), 431-435.
    [67] 趙琳 (2016),t-BAMBP萃取銣的熱力學、動力學及連續萃取放大試驗,成都理工大學碩士論文。
    [68] Xing, P., Wang, G., Wang, C., Ma, B., & Chen, Y. (2018). Separation of rubidium from potassium in rubidium ore liquor by solvent extraction with t-BAMBP. Minerals Engineering, 121, 158-163.
    [69] 伊躍軍、譚秀民、張利珍、張永興、張秀峰、馬亞夢、李琦 (2016),t-BAMBP萃取分離銣鉀技術的研究,廣州化工,第四十四卷第二一期,頁120-121。
    [70] 尤志剛、王舒婭、李波、段東平、鄭紅 (2015),t-BAMBP萃取微量銣的基礎研究,化學試劑,第三十七卷第二期,頁161-164。
    [71] 楊玲、王林生、賴華生、周建、文小強、陳佩琳 (2011),不同稀釋劑中t-BAMBP萃取銣銫的研究,稀有金屬,第三十五卷第四期,頁627-632。

    無法下載圖示 校內:2024-10-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE