| 研究生: |
林俊成 Lin, Chun-Cheng |
|---|---|
| 論文名稱: |
氧化鋅:鋰薄膜特性探討及其在電阻式記憶體與聲波感測器之應用 Characterization of Li-Doped ZnO Thin Films and Their Application to Resistive Random Access Memory Devices and Acoustic-Based Sensors |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 鋰摻雜 、電阻式記憶體 、薄膜體聲波諧振器 、感測器 、氧化鋅 |
| 外文關鍵詞: | Li-doped, resistive random access memory (ReRAM), thin-film bulk acoustic-wave resonator (TFBAR), sensor, zinc oxide (ZnO) |
| 相關次數: | 點閱:86 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅為一具有寬能隙及高激子束缚能的N型多功能半導體,具備獨特的光學、電學、聲波及機械特性。因此,提升氧化鋅薄膜品質,乃其在實際應用上的重大課題。首先,本文利用「真空後退火法」及「同步直流偏壓濺鍍法」改善氧化鋅薄膜的微結構,藉此提升薄膜的壓電、鐵電及介電特性。
再者,本文研究鋰摻雜氧化鋅薄膜製作之「非揮發性電阻式記憶體元件」,以調變鋰摻雜的原子百分比,藉此改變薄膜內部各種缺陷的比例,進而提升記憶體元件的「電阻切換比」;此外,藉由調變「限流大小」改變記憶體元件之電阻切換行為,使記憶體元件具備「多位元切換功能」,有效提升儲存效能。
最後,本文研究以「紫外光臭氧後退火處理法」改善鋰摻雜氧化鋅薄膜之微結構與壓電特性,輔以「濕式蝕刻法」與「掀離法」,將鋰摻雜氧化鋅薄膜與金屬電極製作成「薄膜體聲波諧振器」, 並透過自建系統以量測薄膜體聲波諧振器對於「真空度」與「相對溼度」之感測功能。
Zinc oxide (ZnO) is a direct wide-bandgap (Eg ~ 3.37 eV) n-type multifunctional semiconductor material with many unique electrical, optical, acoustic and mechanical properties. The literature contains many proposals for enhancing the structural and electrical properties of ZnO thin films and extending their applications. The present thesis focuses on improving the microstructure of Li-doped ZnO (LZO) thin films with particular regard to their potential application to resistive random access memory (ReRAM) devices and thin-film bulk acoustic-wave resonator (TFBAR) sensors.
The thesis commences by investigating the use of an in-situ post-sputtering annealing process performed under vacuum conditions to improve the piezoelectric and ferroelectric properties of 3 at% LZO thin films grown by radio frequency (RF) magnetron sputtering. The results confirm that the piezoelectric and ferroelectric properties of the LZO thin film are both improved through a careful control of the annealing conditions. An enhanced RF magnetron sputtering process is then proposed in which 3 at% LZO thin films are prepared with a synchronous DC-bias voltage applied to the substrate in order to improve the structural, piezoelectric and dielectric properties of the films.
In the second stage of the thesis, an investigation is performed into the potential of LZO films for non-volatile memory (NVM) applications. The investigations focus particularly on the effects of the Li dopant level on the formation and distribution of defects in the LixZn1-xO structure and the subsequent impact of these defects on the resistive random access memory (ReRAM) device performance. It is shown that the Li dopant concentration has a direct influence on the distribution of the defects in the LixZn1-xO film, and thus has a critical effect on the resistance ratio of the device. The multi-step (i.e., normal, 2-, 3-, and 4-step) RESET behavior of a 6 at% LZO ReRAM device is systematically explored under various compliance currents (CC) in terms of current-voltage (I-V) curves (RS cycles and linear fitting results), in-situ transmission electron microscopy (TEM) observations (evolution of the conductive filaments (CFs) within the ReRAM device), electrochemical impedance spectroscopy (EIS) measurements (Nyquist plot and equivalent circuit), and chemical bonds (Li+ ions).
Finally, longitudinal-mode and contour-mode TFBARs are synthesized incorporating LZO films treated by UV-ozone illumination for 30 ~ 120 min. The microstructural, piezoelectric and energy binding properties of the various LZO films are examined and compared. The results show that the UV illumination process improves both the crystallization properties of the LZO films and their piezoelectric performance. In addition, it is shown that given an appropriate UV illumination time, the TFBARs exhibit a high resolution for atmospheric sensing and an approximately linear response for relative humilities in the range of 30 ~ 90%.
[1] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Physical Review B, vol. 66, no. 7, pp. 073202, 2002.
[2] X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, “Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition,” Applied Physics A, vol. 77, no. 3, pp. 561-565, 2003.
[3] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, and M. V. Swain, “Mechanical deformation of single-crystal ZnO,” Applied Physics Letters, vol. 80, no. 6, pp. 956-958, 2002.
[4] J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Applied Physics Letters, vol. 80, no. 24, pp. 4537-4539, 2002.
[5] A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, “Ab initio study of piezoelectricity and spontaneous polarization in ZnO,” Physical Review B, vol. 50, no. 15, pp. 10715-10721, 1994.
[6] N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, and D. C. Look, “Production of nitrogen acceptors in ZnO by thermal annealing,” Applied Physics Letters, vol. 80, no. 8, pp. 1334-1336, 2002.
[7] H. J. Ko, M. S. Han, Y. S. Park, Y. S. Yu, B. I. Kim, S. S. Kim, and J. H. Kim, “Improvement of the quality of ZnO substrates by annealing,” Journal of Crystal Growth, vol. 269, no. 2–4, pp. 493-498, 2004.
[8] Y. C. Liu, S. K. Tung, and J. H. Hsieh, “Influence of annealing on optical properties and surface structure of ZnO thin films,” Journal of Crystal Growth, vol. 287, no. 1, pp. 105-111, 2006.
[9] Y. M. Cho, W. K. Choo, H. Kim, D. Kim, and Y. Ihm, “Effects of rapid thermal annealing on the ferromagnetic properties of sputtered Zn1−x(Co0.5Fe0.5)xO thin films,” Applied Physics Letters, vol. 80, no. 18, pp. 3358-3360, 2002.
[10] P. T. Hsieh, Y. C. Chen, C. M. Wang, Y. Z. Tsai, and C. C. Hu, “Structural and photoluminescence characteristics of ZnO films by room temperature sputtering and rapid thermal annealing process,” Applied Physics A, vol. 84, no. 3, pp. 345-349, 2006.
[11] N. A. Suvorova, I. O. Usov, L. Stan, R. F. DePaula, A. M. Dattelbaum, Q. X. Jia, and A. A. Suvorova, “Structural and optical properties of ZnO thin films by RF magnetron sputtering with rapid thermal annealing,” Applied Physics Letters, vol. 92, no. 14, pp. 141911, 2008.
[12] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications,” Applied Physics Letters, vol. 87, no. 12, pp. 122101, 2005.
[13] Z. S. Wang, F. Zeng, J. Yang, C. Chen, Y. C. Yang, and F. Pan, “Reproducible and controllable organic resistive memory based on Al/poly(3,4-ethylene-
dioxythiophene):poly(styrenesulfonate)/Al structure,” Applied Physics Letters, vol. 97, no. 25, pp. 253301, 2010.
[14] B. Cho, S. Song, Y. Ji, T. W. Kim, and T. Lee, “Organic resistive memory devices: performance enhancement, integration, and advanced architectures,” Advanced Functional Materials, vol. 21, no. 15, pp. 2806-2829, 2011.
[15] Z. L. Liao, Z. Z. Wang, Y. Meng, Z. Y. Liu, P. Gao, J. L. Gang, H. W. Zhao, X. J. Liang, X. D. Bai, and D. M. Chen, “Categorization of resistive switching of metal-Pr0.7Ca0.3MnO3-metal devices,” Applied Physics Letters, vol. 94, no. 25, pp. 253503, 2009.
[16] A. Rebello and R. Mahendiran, “Pulse width controlled resistivity switching at room temperature in Bi0.8Sr0.2MnO3,” Applied Physics Letters, vol. 94, no. 11, pp. 112107, 2009.
[17] X. G. Chen, X. B. Ma, Y. B. Yang, L. P. Chen, G. C. Xiong, G. J. Lian, Y. C. Yang, and J. B. Yang, “Comprehensive study of the resistance switching in SrTiO3 and Nb-doped SrTiO3,” Applied Physics Letters, vol. 98, no. 12, pp. 122102, 2011.
[18] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, “Switching characteristics of Cu2O metal-insulator-metal resistive memory,” Applied Physics Letters, vol. 91, no. 12, pp. 123517, 2007.
[19] J. Y. Ye, Y. Q. Li, J. Gao, H. Y. Peng, S. X. Wu, and T. Wu, “Nanoscale resistive switching and filamentary conduction in NiO thin films,” Applied Physics Letters, vol. 97, no. 13, pp. 132108, 2010.
[20] T. H. Hou, K. L. Lin, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, “Evolution of RESET current and filament morphology in low-power HfO2 unipolar resistive switching memory,” Applied Physics Letters, vol. 98, no. 10, pp. 103511, 2011.
[21] W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters, vol. 92, no. 2, pp. 022110, 2008.
[22] H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, “Electrode dependence of resistive switching in Mn-doped ZnO: Filamentary versus interfacial mechanisms,” Applied Physics Letters, vol. 96, no. 19, pp. 192113, 2010.
[23] M. Villafuerte, S. P. Heluani, G. Juárez, G. Simonelli, G. Braunstein, and S. Duhalde, “Electric-pulse-induced reversible resistance in doped zinc oxide thin films,” Applied Physics Letters, vol. 90, no. 5, pp. 052105, 2007.
[24] X. Chen, G. Wu, and D. Bao, “Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications,” Applied Physics Letters, vol. 93, no. 9, pp. 093501, 2008.
[25] K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida, “Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films,” Applied Physics Letters, vol. 96, no. 14, pp. 143505, 2010.
[26] M. H. Tang, Z. Q. Zeng, J. C. Li, Z. P. Wang, X. L. Xu, G. Y. Wang, L. B. Zhang, S. B. Yang, Y. G. Xiao, and B. Jiang, “Resistive switching behavior of La-doped ZnO films for nonvolatile memory applications,” Solid-State Electronics, vol. 63, no. 1, pp. 100-104, 2011.
[27] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully room-temperature-
fabricated nonvolatile resistive memory for ultrafast and high-density memory application,” Nano Letters, vol. 9, no. 4, pp. 1636-1643, 2009.
[28] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Applied Physics Letters, vol. 92, no. 23, pp. 232112, 2008.
[29] K. H. Kim, S. Hyun Jo, S. Gaba, and W. Lu, “Nanoscale resistive memory with intrinsic diode characteristics and long endurance,” Applied Physics Letters, vol. 96, no. 5, pp. 053106, 2010.
[30] A. B. K. Chen, B. J. Choi, X. Yang, and I. W. Chen, “A parallel circuit model for multi-state resistive-switching random access memory,” Advanced Functional Materials, vol. 22, no. 3, pp. 546-554, 2012.
[31] X. Yang, A. B. K. Chen, B. Joon Choi, and I. W. Chen, “Demonstration and modeling of multi-bit resistance random access memory,” Applied Physics Letters, vol. 102, no. 4, pp. 043502, 2013.
[32] J. Park, M. Jo, S. Jung, J. Lee, W. Lee, S. Kim, S. Park, J. Shin, and H. Hwang, “New set/reset scheme for excellent uniformity in bipolar resistive memory,” IEEE Electron Device Letters, vol. 32, no. 3, pp. 228-230, 2011.
[33] J. Park, K. P. Biju, S. Jung, W. Lee, J. Lee, S. Kim, S. Park, J. Shin, and H. Hwang, “Multibit operation of TiOx-based ReRAM by Schottky barrier height engineering,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 476-478, 2011.
[34] B. Gao, B. Chen, F. Zhang, L. Liu, X. Liu, J. Kang, H. Yu, and B. Yu, “A novel defect-engineering-based implementation for high-performance multilevel data storage in resistive switching memory,” IEEE Transactions on Electron Devices, vol. 60, no. 4, pp. 1379-1383, 2013.
[35] C. Y. Huang, J. H. Jieng, W. Y. Jang, C. H. Lin, and T. Y. Tseng, “Improved resistive switching characteristics by Al2O3 layers inclusion in HfO2-based RRAM devices,” ECS Solid State Letters, vol. 2, no. 8, pp. P63-P65, 2013.
[36] B. Gao, B. Chen, F. Zhang, P. Huang, L. Liu, X. Liu, and J. Kang, “Multi-bit nonvolatile logic implemented with metal-oxide based resistive switching device,” Solid State Communications, vol. 205, pp. 51-54, 2015.
[37] S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh, and I. C. Chen, “A ZnO nanowire-based humidity sensor,” Superlattices and Microstructures, vol. 47, no. 6, pp. 772-778, 2010.
[38] L. Chen and J. Zhang, “Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods,” Sensors and Actuators A: Physical, vol. 178, pp. 88-93, 2012.
[39] P. Biswas, S. Kundu, P. Banerji, and S. Bhunia, “Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array,” Sensors and Actuators B: Chemical, vol. 178, pp. 331-338, 2013.
[40] N. Asar, A. Erol, S. Okur, and M. C. Arikan, “Morphology-dependent humidity adsorption kinetics of ZnO nanostructures,” Sensors and Actuators A: Physical, vol. 187, pp. 37-42, 2012.
[41] V. K. Tomer, S. Duhan, R. Malik, S. P. Nehra, and S. Devi, “A novel highly sensitive humidity sensor based on ZnO/SBA-15 hybrid nanocomposite,” Journal of the American Ceramic Society, vol. 98, no. 12, pp. 3719-3725, 2015.
[42] G. M. Ashley, P. B. Kirby, T. P. Butler, R. Whatmore, and J. K. Luo, “Chemically sensitized thin-film bulk acoustic wave resonators as humidity sensors,” Journal of the Electrochemical Society, vol. 157, no. 12, pp. J419-J424, 2010.
[43] X. Qiu, R. Tang, J. Zhu, J. Oiler, C. Yu, Z. Wang, and H. Yu, “Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator,” Sensors and Actuators B: Chemical, vol. 147, no. 2, pp. 381-384, 2010.
[44] X. Qiu, R. Tang, J. Zhu, J. Oiler, C. Yu, Z. Wang, and H. Yu, “The effects of temperature, relative humidity and reducing gases on the ultraviolet response of ZnO based film bulk acoustic-wave resonator,” Sensors and Actuators B: Chemical, vol. 151, no. 2, pp. 360-364, 2011.
[45] G. Piazza, P. J. Stephanou, and A. P. Pisano, “One and two port piezoelectric higher order contour-mode MEMS resonators for mechanical signal processing,” Solid-State Electronics, vol. 51, no. 11–12, pp. 1596-1608, 2007.
[46] A. S. Kamble, B. B. Sinha, K. Chung, M. G. Gil, V. Burungale, C. J. Park, J. H. Kim, and P. S. Patil, “Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays,” Electrochimica Acta, vol. 149, pp. 386-393, 2014.
[47] O. Dulub, L. A. Boatner, and U. Diebold, “STM study of the geometric and electronic structure of ZnO(0 0 0 1)-Zn, (0 0 0 1̄)-O, (1 0 1̄ 0), and (1 1 2̄ 0) surfaces,” Surface Science, vol. 519, no. 3, pp. 201-217, 2002.
[48] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, no. 4, pp. 041301, 2005.
[49] M. D. McCluskey and S. J. Jokela, “Defects in ZnO,” Journal of Applied Physics, vol. 106, no. 7, pp. 071101, 2009.
[50] A. Polian, M. Grimsditch, and I. Grzegory, “Elastic constants of gallium nitride,” Journal of Applied Physics, vol. 79, no. 6, pp. 3343-3344, 1996.
[51] S. Maniv, W. D. Westwood, and E. Colombini, “Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers,” Journal of Vacuum Science & Technology, vol. 20, no. 2, pp. 162-170, 1982.
[52] A. A. Vives, Piezoelectric Transducers and Applications: Springer Berlin Heidelberg, 2013.
[53] A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “First-principles study of native point defects in ZnO,” Physical Review B, vol. 61, no. 22, pp. 15019-15027, 2000.
[54] J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Applied Physics Letters, vol. 69, no. 4, pp. 503-505, 1996.
[55] C. G. Van de Walle, “Defect analysis and engineering in ZnO,” Physica B: Condensed Matter, vol. 308–310, pp. 899-903, 2001.
[56] E. C. Lee and K. J. Chang, “Possible p-type doping with group-I elements in ZnO,” Physical Review B, vol. 70, no. 11, pp. 115210, 2004.
[57] Y. Yan, M. M. Al-Jassim, and S. H. Wei, “Doping of ZnO by group-IB elements,” Applied Physics Letters, vol. 89, no. 18, pp. 181912, 2006.
[58] D. Smith, Thin-Film Deposition: Principles and Practice: McGraw-Hill Education, 1995.
[59] B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching: Wiley, 1980.
[60] H. Morkoç, Nitride Semiconductors and Devices: Springer Berlin Heidelberg, 2013.
[61] K. K. Kim, J. H. Song, H. J. Jung, W. K. Choi, S. J. Park, J. H. Song, and J. Y. Lee, “Photoluminescence and heteroepitaxy of ZnO on sapphire substrate (0001) grown by rf magnetron sputtering,” Journal of Vacuum Science & Technology A, vol. 18, no. 6, pp. 2864-2868, 2000.
[62] J. Hinze and K. Ellmer, “In situ measurement of mechanical stress in polycrystalline zinc-oxide thin films prepared by magnetron sputtering,” Journal of Applied Physics, vol. 88, no. 5, pp. 2443-2450, 2000.
[63] J. H. Jou, M. Y. Han, and D. J. Cheng, “Substrate dependent internal stress in sputtered zinc oxide thin films,” Journal of Applied Physics, vol. 71, no. 9, pp. 4333-4336, 1992.
[64] M. K. Ryu, S. H. Lee, M. S. Jang, G. N. Panin, and T. W. Kang, “Postgrowth annealing effect on structural and optical properties of ZnO films grown on GaAs substrates by the radio frequency magnetron sputtering technique,” Journal of Applied Physics, vol. 92, no. 1, pp. 154-158, 2002.
[65] Y. Chen, D. Bagnall, and T. Yao, “ZnO as a novel photonic material for the UV region,” Materials Science and Engineering: B, vol. 75, no. 2–3, pp. 190-198, 2000.
[66] S. Y. Chu, W. Water, and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” Journal of the European Ceramic Society, vol. 23, no. 10, pp. 1593-1598, 2003.
[67] C. L. Tsai, F. Xiong, E. Pop, and M. Shim, “Resistive random access memory enabled by carbon nanotube crossbar electrodes,” ACS Nano, vol. 7, no. 6, pp. 5360-5366, 2013.
[68] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[69] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat Mater, vol. 6, no. 11, pp. 833-840, 2007.
[70] D. S. Jeong, H. Schroeder, and R. Waser, “Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack,” Electrochemical and Solid-State Letters, vol. 10, no. 8, pp. G51-G53, 2007.
[71] Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, and S. J. Wind, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals,” Applied Physics Letters, vol. 78, no. 23, pp. 3738-3740, 2001.
[72] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, “Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory,” Advanced Materials, vol. 19, no. 17, pp. 2232-2235, 2007.
[73] E. Lim and R. Ismail, “Conduction mechanism of valence change resistive switching memory: A survey,” Electronics, vol. 4, no. 3, pp. 586, 2015.
[74] A. Rose, “Space-charge-limited currents in solids,” Physical Review, vol. 97, no. 6, pp. 1538-1544, 1955.
[75] S. Yohan, L. Sangyouk, A. Ilsin, S. Chulgi, and J. Heejun, “Conduction mechanism of leakage current due to the traps in ZrO2 thin film,” Semiconductor Science and Technology, vol. 24, no. 11, pp. 115016, 2009.
[76] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, “Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications,” IEEE Electron Device Letters, vol. 29, no. 4, pp. 331-333, 2008.
[77] M. Ismail, C. Y. Huang, D. Panda, C. J. Hung, T. L. Tsai, J. H. Jieng, C. A. Lin, U. Chand, A. M. Rana, E. Ahmed, I. Talib, M. Y. Nadeem, and T. Y. Tseng, “Forming-free bipolar resistive switching in nonstoichiometric ceria films,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1-8, 2014.
[78] P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” Journal of Physics D: Applied Physics, vol. 3, no. 2, pp. 151, 1970.
[79] S. Yu, X. Guan, and H. S. P. Wong, “Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model,” Applied Physics Letters, vol. 99, no. 6, pp. 063507, 2011.
[80] F. C. Chiu, “A review on conduction mechanisms in dielectric films,” Advances in Materials Science and Engineering, vol. 2014, pp. 18, 2014.
[81] F. C. Chiu, S. Mondal, and T. M. Pan, "Structural and electrical characteristics of alternative high-k dielectrics for CMOS applications," High-k Gate Dielectrics for CMOS Technology, pp. 111-184: Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
[82] W. S. Lau, “An extended unified Schottky-Poole-Frenkel theory to explain the current-voltage characteristics of thin film metal-insulator-metal capacitors with examples for various high-k dielectric materials,” ECS Journal of Solid State Science and Technology, vol. 1, no. 6, pp. N139-N148, 2012.
[83] R. Perera, A. Ikeda, R. Hattori, and Y. Kuroki, “Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation,” Microelectronic Engineering, vol. 65, no. 4, pp. 357-370, 2003.
[84] B. Ricco, G. Gozzi, and M. Lanzoni, “Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films,” IEEE Transactions on Electron Devices, vol. 45, no. 7, pp. 1554-1560, 1998.
[85] M. P. Houng, Y. H. Wang, and W. J. Chang, “Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model,” Journal of Applied Physics, vol. 86, no. 3, pp. 1488-1491, 1999.
[86] A. Safari and E. K. Akdogan, Piezoelectric and Acoustic Materials for Transducer Applications: Springer US, 2008.
[87] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Zeitschrift für Physik, vol. 155, no. 2, pp. 206-222, 1959.
[88] C. Ying, G. Saraf, R. H. Wittstruck, N. W. Emanetoglu, and L. Yicheng, "Studies on MgxZn1-xO thin film resonator for mass sensor application," Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, pp. 142-145, 2005.
[89] R. Gabl, H. D. Feucht, H. Zeininger, G. Eckstein, M. Schreiter, R. Primig, D. Pitzer, and W. Wersing, “First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles,” Biosensors and Bioelectronics, vol. 19, no. 6, pp. 615-620, 2004.
[90] W. Reichl, J. Runck, M. Schreiter, E. Greert, and R. Gabl, "Novel gas sensors based on thin film bulk acoustic resonators," Proceedings of the IEEE Sensors 2004, vol.3, pp. 1504-1505, 2004.
[91] Z. Hao, M. S. Marma, K. Eun Sok, C. E. McKenna, and M. E. Thompson, "Implantable resonant mass sensor for liquid biochemical sensing," Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 347-350, 2004.
[92] K. Seshan, Handbook of Thin Film Deposition Processes and Techniques: Elsevier Science, 2001.
[93] http://marriott.tistory.com/97.
[94] C. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications: Elsevier Science, 2011.
[95] C. H. Lin, H. R. Chen, and W. Fang, “Design and fabrication of a miniaturized bulk acoustic filter by high aspect ratio etching,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 4, no. 3, pp. 033010-033010-7, 2005.
[96] V. Gupta and A. Mansingh, “Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film,” Journal of Applied Physics, vol. 80, no. 2, pp. 1063-1073, 1996.
[97] Dhananjay, J. Nagaraju, and S. B. Krupanidhi, “Off-centered polarization and ferroelectric phase transition in Li-doped ZnO thin films grown by pulsed-laser ablation,” Journal of Applied Physics, vol. 101, no. 10, pp. 104104, 2007.
[98] D. Wang, J. Zhou, and G. Liu, “Effect of Li-doped concentration on the structure, optical and electrical properties of p-type ZnO thin films prepared by sol–gel method,” Journal of Alloys and Compounds, vol. 481, no. 1–2, pp. 802-805, 2009.
[99] W. Water, S. Y. Chu, Y. D. Juang, and S. J. Wu, “Li2CO3-doped ZnO films prepared by RF magnetron sputtering technique for acoustic device application,” Materials Letters, vol. 57, no. 4, pp. 998-1003, 2002.
[100] J. Y. Fu, P. Y. Liu, J. Cheng, A. S. Bhalla, and R. Guo, “Optical measurement of the converse piezoelectric d33 coefficients of bulk and microtubular zinc oxide crystals,” Applied Physics Letters, vol. 90, no. 21, pp. 212907, 2007.
[101] L. Jiao, Z. Liu, G. Hu, S. Cui, Z. Jin, Q. Wang, W. Wu, and C. Yang, “Low-temperature fabrication and enhanced ferro- and piezoelectric properties of Bi3.7Nd0.3Ti3O12 films on indium tinoxide/glass substrates,” Journal of the American Ceramic Society, vol. 92, no. 7, pp. 1556-1559, 2009.
[102] D. A. Scrymgeour and J. W. P. Hsu, “Correlated piezoelectric and electrical properties in individual ZnO nanorods,” Nano Letters, vol. 8, no. 8, pp. 2204-2209, 2008.
[103] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, “The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film,” Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006.
[104] R. Yimnirun, N. Triamnak, M. Unruan, A. Ngamjarurojana, Y. Laosiritaworn, and S. Ananta “Stress-dependent ferroelectric properties of Pb(Zr1/2Ti1/2)O3–
Pb(Zn1/3Nb2/3)O3 ceramic systems,” Ceramics International, vol. 35, no. 1, pp. 185-189, 2009.
[105] Y. J. Zhang, J. B. Wang, X. L. Zhong, Y. C. Zhou, X. L. Yuan, and T. Sekiguchi, “Influence of Li-dopants on the luminescent and ferroelectric properties of ZnO thin films,” Solid State Communications, vol. 148, no. 9–10, pp. 448-451, 2008.
[106] K. G. Saw, K. Ibrahim, Y. T. Lim, and M. K. Chai, “Self-compensation in ZnO thin films: An insight from X-ray photoelectron spectroscopy, Raman spectroscopy and time-of-flight secondary ion mass spectroscopy analyses,” Thin Solid Films, vol. 515, no. 5, pp. 2879-2884, 2007.
[107] Y. Y. Tay, S. Li, C. Q. Sun, and P. Chen, “Size dependence of Zn 2p3∕2 binding energy in nanocrystalline ZnO,” Applied Physics Letters, vol. 88, no. 17, pp. 173118, 2006.
[108] A. A. Kelly and K. M. Knowles, Crystallography and Crystal Defects: Wiley, 2012.
[109] L. Zhang and X. Ren, “Aging behavior in single-domain Mn-doped BaTiO3 crystals: Implication for a unified microscopic explanation of ferroelectric aging,” Physical Review B, vol. 73, no. 9, pp. 094121, 2006.
[110] Y. Mikami, K. Yamada, A. Ohnari, T. Degawa, T. Migita, T. Tanaka, K. Kawabata, and H. Kajioka, “Effect of DC bias voltage on the deposition rate for Ni thin films by RF–DC coupled unbalanced-magnetron sputtering,” Surface and Coatings Technology, vol. 133–134, pp. 295-300, 2000.
[111] K. Natori, D. Otani, and N. Sano, “Thickness dependence of the effective dielectric constant in a thin film capacitor,” Applied Physics Letters, vol. 73, no. 5, pp. 632-634, 1998.
[112] L. M. Kukreja, A. K. Das, and P. Misra, “Studies on nonvolatile resistance memory switching in ZnO thin films,” Bulletin of Materials Science, vol. 32, no. 3, pp. 247-252, 2009.
[113] P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement,” Applied Physics A, vol. 90, no. 2, pp. 317-321, 2008.
[114] W. Y. Chang, C. A. Lin, J. H. He, and T. B. Wu, “Resistive switching behaviors of ZnO nanorod layers,” Applied Physics Letters, vol. 96, no. 24, pp. 242109, 2010.
[115] S. Lee, H. Na, J. Kim, J. Moon, and H. Sohn, “Anion-migration-induced bipolar resistance switching in electrochemically deposited TiOx Films,” Journal of the Electrochemical Society, vol. 158, no. 2, pp. H88-H92, 2011.
[116] J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, T. Liu, A. T. S. Wee, Y. P. Feng, and J. Ding, “Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO,” Physical Review Letters, vol. 104, no. 13, pp. 137201, 2010.
[117] J. J. Lander, “Reactions of lithium as a donor and an acceptor in ZnO,” Journal of Physics and Chemistry of Solids, vol. 15, no. 3, pp. 324-334, 1960.
[118] L. Vines, E. V. Monakhov, R. Schifano, W. Mtangi, F. D. Auret, and B. G. Svensson, “Lithium and electrical properties of ZnO,” Journal of Applied Physics, vol. 107, no. 10, pp. 103707, 2010.
[119] J. Hu and B. C. Pan, “Electronic structures of defects in ZnO: Hybrid density functional studies,” The Journal of Chemical Physics, vol. 129, no. 15, pp. 154706, 2008.
[120] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U. I. Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Applied Physics Letters, vol. 88, no. 20, pp. 202102, 2006.
[121] K. C. Chang, T. M. Tsai, T. C. Chang, K. H. Chen, R. Zhang, Z. Y. Wang, J. H. Chen, T. F. Young, M. C. Chen, T. J. Chu, S. Y. Huang, Y. E. Syu, D. H. Bao, and S. M. Sze, “Dual ion effect of the lithium silicate resistance random access memory,” IEEE Electron Device Letters, vol. 35, no. 5, pp. 530-532, 2014.
[122] Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang, and H. Qian, “Study of conduction and switching mechanisms in Al/AlOx/WOx/W resistive switching memory for multilevel applications,” Applied Physics Letters, vol. 102, no. 23, pp. 233502, 2013.
[123] T. M. Tsai, K. C. Chang, T. C. Chang, G. W. Chang, Y. E. Syu, Y. T. Su, G. R. Liu, K. H. Liao, M. C. Chen, H. C. Huang, Y. H. Tai, D. S. Gan, C. Ye, H. Wang, and S. M. Sze, “Origin of hopping conduction in Sn-doped silicon oxide RRAM with supercritical CO2 fluid treatment,” IEEE Electron Device Letters, vol. 33, no. 12, pp. 1693-1695, 2012.
[124] Y. T. Su, K. C. Chang, T. C. Chang, T. M. Tsai, R. Zhang, J. C. Lou, J. H. Chen, T. F. Young, K. H. Chen, B. H. Tseng, C. C. Shih, Y. L. Yang, M. C. Chen, T. J. Chu, C. H. Pan, Y. E. Syu, and S. M. Sze, “Characteristics of hafnium oxide resistance random access memory with different setting compliance current,” Applied Physics Letters, vol. 103, no. 16, pp. 163502, 2013.
[125] C. Walczyk, D. Walczyk, T. Schroeder, T. Bertaud, M. Sowinska, M. Lukosius, M. Fraschke, D. Wolansky, B. Tillack, E. Miranda, and C. Wenger, “Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices,” IEEE Transactions on Electron Devices, vol. 58, no. 9, pp. 3124-3131, 2011.
[126] T. V. Kundozerova, A. M. Grishin, G. B. Stefanovich, and A. A. Velichko, “Anodic Nb2O5 nonvolatile RRAM,” IEEE Transactions on Electron Devices, vol. 59, no. 4, pp. 1144-1148, 2012.
[127] B. Qiu, J. Wang, Y. Xia, Z. Wei, S. Han, and Z. Liu, “Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes,” ACS Applied Materials & Interfaces, vol. 6, no. 12, pp. 9185-9193, 2014.
[128] S. U. Woo, C. S. Yoon, K. Amine, I. Belharouak, and Y. K. Sun, “Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials,” Journal of the Electrochemical Society, vol. 154, no. 11, pp. A1005-A1009, 2007.
[129] C. M. Gore, J. O. White, E. D. Wachsman, and V. Thangadurai, “Effect of composition and microstructure on electrical properties and CO2 stability of donor-doped, proton conducting BaCe1-(x+y)ZrxNbyO3,” Journal of Materials Chemistry A, vol. 2, no. 7, pp. 2363-2373, 2014.
[130] B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, “Constant-phase-element behavior caused by resistivity distributions in films: I. theory,” Journal of the Electrochemical Society, vol. 157, no. 12, pp. C452-C457, 2010.
[131] B. Chakrabarti, R. V. Galatage, and E. M. Vogel, “Multilevel switching in forming-free resistive memory devices with atomic layer deposited HfTiOx nanolaminate,” IEEE Electron Device Letters, vol. 34, no. 7, pp. 867-869, 2013.
[132] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/
inhomogeneous transition of current distribution,” Physical Review B, vol. 77, no. 3, pp. 035105, 2008.
[133] H. Sun, Q. Liu, S. Long, H. Lv, W. Banerjee, and M. Liu, “Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device,” Journal of Applied Physics, vol. 116, no. 15, pp. 154509, 2014.
[134] H. Zheng, X. L. Du, Q. Luo, J. F. Jia, C. Z. Gu, and Q. K. Xue, “Wet chemical etching of ZnO film using aqueous acidic salt,” Thin Solid Films, vol. 515, no. 7–8, pp. 3967-3970, 2007.
[135] X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, and R. W. Li, “Observation of conductance quantization in oxide-based resistive switching memory,” Advanced Materials, vol. 24, no. 29, pp. 3941-3946, 2012.