簡易檢索 / 詳目顯示

研究生: 李明育
Li, Ming-Yu
論文名稱: 電漿氮離子植佈技術應用於精密沖壓模具機械性質及摩潤性能改善之研究
The Study in the Improvements of Mechanical Properties and Tribological Behavior of the Press Forming Molds Processed by the Technology of Plasma Nitrogen Ion Implantation.
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 表面電位顯微鏡電漿
外文關鍵詞: plasma, DC11, DC53, SKH51
相關次數: 點閱:149下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主題是「電漿氮離子植佈技術應用於精密沖壓模具機械性質及摩潤性能改善之研究」。本論文主要研究項目有三:第一個研究主題成功的使用表面電位顯微鏡 (Kelvin Probe Force Microscope,KFM)利用電位關係建立量測改質層材料性質之理論與方法。其優點在於可在大氣下量測及擁有高解析度,可省去TEM試片製備的不便,並解決SEM材料解析度不高的問題。以往表面電位顯微鏡 (Kelvin Probe Force Microscope,KFM)使用在半導體產業,本論文根據不同材料,電位也不同之原理,得到材料的電位分佈,可進一步分析材料在表面的分佈與變化情況。此方法可作定性分析,且可在大氣下或真空中做量測,表面電位顯微鏡 (Kelvin Probe Force Microscope,KFM)提供了另一種在常溫常壓下簡單又快速的材料檢測方法,可作為材料檢測的輔助工具。
    第二在於結合XRD、SEM、GDS、KFM描述其氮化層包含化合層(compound layer)、擴散層(diffusion layer)與固溶層(solid solution layer)之量值及分佈情況,並探討其晶相結構觀察與成分分析對機械性質之影響。使用SEM可看出其氮在表面分佈定性情況,而GDS可獲得其氮濃度定量縱深分析,SEM與GDS互相對照可分析其氮化層在表面分佈定性及定量情況。XRD可定量看出其為何種材料,而KFM可看出其不同相在表面分佈定性情況,XRD與KFM互相對照可分析其在表面分佈定性及定量情況。綜合以上四種儀器分析可完整的描述其氮化層包含化合層(compound layer)、擴散層(diffusion layer)與固溶層(solid solution layer)之量值及分佈情況,可幫助後續研究對氮化層材料了解,為十分有利的分析方法。
    第三在於建立量測改質層機械性質之理論與方法,並配合實驗以量測得到改質層之正確的機械性質,探討三種衝壓模具(DC11、DC53、SKH51)兩個植入參數:植入溫度(400℃、460℃、520℃)與植入氮氫比(N:H=1:1、N:H=1:3、N:H=4:1)對改質層厚度、硬度、楊式模數與抗磨耗性能、疲勞性能、破壞韌性、磨潤試驗,其機械性質之影響。由實驗可知對於同一種材料而言,氮化層越深,平均硬度越低,峰值濃度越高,平均硬度越高,峰值距離表面越遠,平均硬度越低。當其植入溫度越高,疲勞破壞時間越久,破壞靭性依底材而定,不論哪一種底材,溫度越高硬度越低,增加氫的比例,有助於破壞韌性,增加氮的比例,有助於疲勞破壞時間及硬度。對於其氮化生成物 在氮化層中有助於增加破壞韌性及疲勞破壞時間,但對於硬度值卻會使其降低; 有助於增加破壞韌性,但對於硬度值卻會使其降低。

    In the present study, three steel materials, DC11, DC53 and SKH51, were selected as the mold substrate materials in the press formings. Five kinds of specimens were prepared by the plasma immersion ion implantation (PIII) technique for each of these three substrate materials by differing the implantation temperature or the volume ratio of nitrogen to hydrogen in the gas mixture. The distributions of nitrogen concentration at the nitrided layer were obtained using a glow discharge spectrometer (GDS). A nanotester was applied to obtain the mechanical hardness and Young’s moduli varying at different penetration depths. This nanotester was also applied to evaluate the fatigue lives and scratch wear resistances of these specimens. A Vickers indentation tester was used to create radial surface cracks in order to evaluate the fracture toughness of a specimen. X-ray diffraction (XRD) was applied to detect the chemical components (phases) formed at the nitrided layer of a specimen. For the specimens with the same substrate material, most of the mean mechanical hardnesses are lowered by the increase in the total penetration depth of the nitrogen; these hardnesses are also largely lowered by increasing the distance of the peak position of nitrogen concentration from the implantation surface. Both the fracture toughness and the fatigue life of a specimen arising at the nitrided layer are elevated by increasing the implantation temperature; however, the behavior exhibited in these two parameters due to the change in the hydrogen concentration are exactly opposite. The mechanical hardness of a specimen is lowered by increasing either the implantation temperature or the hydrogen concentration in the gas mixture. The intensities of four chemical components ( ) show the trend that they are all elevated by increasing the implantation temperature. However, the intensities exhibited due to the change in the hydrogen concentration can be classified into two groups. The rise in the intensity of ( ) is advantageous for the increases in the fracture toughness and fatigue life of a specimen; but is disadvantageous for the increase in the mechanical hardness of a specimen. The enhancement in the intensity of is advantageous for the elevation in the fracture toughness, but is disadvantageous for the increase in the mechanical hardness. The specimens prepared by increasing the nitrogen concentration in the gas mixture is advantageous for the enhancement in the adhesive wear.

    中文摘要..................................................I 英文摘要.................................................Ⅲ 致謝.....................................................Ⅳ 目錄.....................................................Ⅴ 表目錄...................................................Ⅷ 圖目錄................................................... X 符號表.................................................. XII 第一章 緒論...............................................1 1-1前言...................................................1 1-2文獻回顧...............................................6 1-3研究目的及內容.........................................8 第二章 離子植入強化、摩擦力定性分析與奈米機械性質量測理論.11 2-1 離子植入材料表面改性..................................11 2-1-1金屬材料強化原理.....................................11 2-1-2金屬材料強化機制.....................................12 2-1-3電漿浸泡式離子植入(PIII).............................15 2-1-4電漿產生原理.........................................16 2-1-5電子迴旋共振微波電漿源...............................19 2-2掃瞄探針顯微術.........................................21 2-2-1掃瞄式作用力顯微術 (Scanning Force Microscopy, SFM)......................................................22 2-3奈米壓痕試驗之硬度與彈性模數理論建立...................26 2-4破壞韌性理論...........................................32 第三章 實驗方法及步驟.....................................49 3-1實驗目的. .............................................49 3-2離子植入表面改質. .....................................49 3-2-1離子植入系統設備.....................................49 3-2-2試驗材料.............................................50 3-2-3製程步驟.............................................50 3-3改質層特性分析及鑑定. .................................52 3-3-1改質層厚度之檢測.....................................52 3-3-2改質層硬度、楊氏模數及抗磨耗性能之檢測...............53 3-3-3改質層微磨耗性能檢測.................................54 3-3-4抗疲勞性能檢測.......................................55 3-3-5破壞韌性之檢測.......................................56 3-3-6一般氮化法之抗磨耗性能檢測...........................56 3-3-7改質層定性分析.......................................58 第四章結果與討論..........................................66 4-1XRD分析結果............................................68 4-2輝光放電縱深分析結果...................................68 4-3抗疲勞性能分析.........................................72 4-4壓痕試驗分析...........................................73 4-5破壞韌性分析...........................................78 4-6破壞韌性與抗疲勞性能之比較.............................80 4-7微磨耗性能分析.........................................80 4-8SEM剖面觀察與EDS元素分析...............................81 4-9AFM剖面觀察與KFM電位量測...............................82 4-10一般氮化抗磨耗性能分析................................83 4-11綜合分析..............................................84 第五章 結論與未來研究方向.................................118 5-1結論...................................................118 5-2未來研究方向...........................................120 參考文獻..................................................121 自述......................................................124

    1.J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, J. Appl. Phys. 62 (1987), p.4591.
    2.莊達人, “VLSI製造技術”, 高立圖書有限公司, (2001), p.324.
    3.B. hushan, “Handbook of Micro/Nano Tribology”, (1995).
    4.J. Tendys,I. J. Donnelly,M.J. Kenny,J.T.A. Pollock,Appl.Phy.Lett.53(1998) , p.2143.
    5.W. L. Li,W. D. Fei,Y. Sun,and Surf.Coat.Technol. 150(2002) , pp.64-69
    6.S. Karaoglu, Materials Characterization 49(2003) , p.349.
    7.T. Liapina, A. Lenineweber, and E .J. Mittemeijer, Scripta Materialia 48 (2003), pp.1643-1648
    8.M. Keddam, M. E. Djeghlal, and L. Barrallier, Applied Surface Science 242(2005) , pp.367-374
    9.Liu Xianghuai, Surface and Coatings Technology, Vol.131(2000), pp.261-266.
    10.T. Ebisawa, R. Saikudo, Surface and Coatings Technology, Vol.86-87(1996), pp.622-627.
    11.Manyuan Li, Emile J. Knystautas, Madhavarao Krishnadev, Surface Coatings Technology, Vol.138(2001), pp.220-228.
    12.J.A. Garcia, A. Guette, A. Medrano, C. Labrugere, M. Rico, M. Lahaye, R. Sanchez, A. Martinez, R. J. Rodriguez, Vacuum, Vol.64(2002), pp.343-351.
    13.A. O. Olofinjana, Z. Chen, J. M. Bell, Materials Letters, Vol.53(2002), pp.385-391.
    14.X .B. Tian, Z.M. Zeng, T. Zhang, B .Y. Tang, P. K. Chu, Thin Solid Films, Vol.366(2000), pp.150-154.
    15.J. M. Priest, M. J. Baldwin, M. P. Fewell, Surface and Coatings Technology, Vol.145(2001), pp.152-163.
    16.B. Larisch, U. Brusky, H. J. Spies, Surface and Coatings Technology, Vol.116-119(1999), pp.205-211.
    17.C. Blawert, B. L. Mordike, Surface and Coatings Technology, Vol.116-119(1999), pp.352-360.
    18.R. Gunzel, M. Betzl, I. Alphonsa, B.Ganguly, P.I. John, S. Mukherjee, Surface and Coatings Technology, Vol.112(1999), pp.307-309.
    19.C. Blawert, B. L. Mordike, U. Rensch, R. Wunsch, R. Wiedemann, H. Oettel, Surface and Coatings Technology, Vol.131(2000), pp.334-339.
    20.K. Ram Mohan Rao, S. Mukherjee, P. M. Raole, I. Manna, Surface and Coating Technology,Vol.150(2002), pp.80-87.
    21.X. B. Tian, T. X. Leng, T.K. Kwok, L. P. Wang, B.Y. Tang, P.K. Chu, Surface and Coating Technology, Vol.135(2001), pp.178-183.
    22.李春穎,許煙明,陳忠仁譯,“材料科學與工程”, 高立圖書有限公司,(2001).
    23.張通和,吳瑜光,“離子注入表面優化技術”, 冶金工業出版社, (1993).
    24.曾煥華,“電漿的世界”,第一章, 銀禾文化事業有限公司, 台北台灣, (1987).
    25.Brian Chapman, Glow Discharge Process, John Wiley & Sons, Inc, United State of America, (1980), Chapter 5.
    26.J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London , (1995).
    27.H. R. Kaufman , J. Vac. Sci. Technol. A4[3] (1986) , p.764.
    28.V. J. Morris,A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London,(1999).
    29.D. Terris, J. E. Stem, D. Rugar, and H. J. Mamin, Phys. Rev. Lett. 63, 2669 (1989).
    30.D. Krauss, and L. E. Brus, Phys. Rev. Lett. 83, 4840 (1999).
    31.潘錦昌, 低溫離子束沈積含氮類鑽碳之微-奈米機械、材料性質及磨潤性能之研究, 國立成功大學, 碩士論文, (2002).
    32.I. N. Sneddon, Int.J. Engng Sci.,Vol.3(1965), pp.47.
    33.Gordon Davies, “Properties and Growth of Diamond,”INSPEC, the Institution of Electrical Engineers, London, United Kindom. (1994).
    34.G.. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,”J. Mater. Res., Vol.7(1992), pp.613-617.
    35.R. B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,”Int. J. Solids Structure, Vol.23, No.12(1987),pp.1657-1664.
    36.W. C. Oliver, “An improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,”J. Mater. Res. , Vol.7, No.6,(1992), pp.1564-1583.
    37.J. B. Pethica, R. Hutchings and W. C. Oliver, Phil. Mag. A, Vol.48(1983), pp.593.
    38.V. J. Morris,A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London,(1999).
    39.J. B. Pethica, R. Hutchings and W. C. Oliver, Phil. Mag. A, Vol.48(1983), pp.593-606.
    40.B. R. Lawn ,A.G.. Evans and D. B. Marshall,Journal of the American Ceramic Society-Lawn et al.,Vol.63(1980),No9-10, pp.575-581.
    41.G. R. Anstis ,P. C. hantikul,B. R. Lawn and D. B. Marshall,Journal of the American Ceramic Society-Anstis et al.,Vol.64(1981),No9, pp.533-538.
    42.C. Blawert and B. L. Mordike, Surf. Coat. Technol. Vol.93 (1997), p.274.
    43.M. Ueda, L.A. Berni, R.M. Castro, A.F. Beloto, E. Abramof, J.O. Rossi, J.J. Barroso, and C.M. Lepienski, Surf. Coat. Technol. Vol.156 (2002), p.71.
    44.M. Ueda, I. Oney, M.Yildiz, Y. Akalin, A.H. Ucisik, Vacuum Vol.73(2004) , pp. 505-510.
    45.M.B.karamis,E. Gercekcioglu, Wear Vol.243(2000) , pp.76-84
    46.S.J. Bull, A.M. Jone, A.R. McCabe, Surface and Coatings Technology, Vol.83(1996), pp.257-262.
    47.V.V. Uglov, V.V. Astashynski , E.K. Stalmoshenok, Surface and Coatings Technology, Vol.180-181(2004), pp.108-112.

    下載圖示
    2006-07-31公開
    QR CODE