簡易檢索 / 詳目顯示

研究生: 林哲安
Lin, Che-An
論文名稱: 氧化物全固態鋰電池:計算熱力學輔助材料設計與電場輔助燒結製程
Computational thermodynamics-guided materials design and field-assisted sintering technology for oxide-based all-solid-state Li batteries
指導教授: 林士剛
Lin, Shih-Kang
共同指導教授: 邱繼正
Chiu, Chi-Chen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 133
中文關鍵詞: 第一原理計算熱力學氧化物全固態鋰電池高能量密度正極電場輔助燒結界面設計
外文關鍵詞: first-principles calculation, thermodynamics, oxide-based all-solid-state Li batteries, high energy density cathode, FAST/SPS, interface design
ORCID: 0000-0002-0833-5345
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化物全固態電池的高安全性及電容量使其成為適合未來電動車或儲能相關技術使用的電池。氧化物全固態電池主要分為三個部分,複合正極、電解質及負極,而本研究專注於複合正極部分的材料設計。在固態電池中為了提高活性材的厚度進而提升電池的能量密度,人們通常將正極和電解質粉末混合製成複合正極。氧化物粉末的結合需要透過燒結製成。氧化物電解質通常需要高溫(大於1000 °C)和長時間(數小時)的燒結才能夠達到足夠的離子導性,但是目前的商用正極材料無法承受如此高溫和長時間的燒結製成。除了正極本身的耐熱性之外,正極與電解質界面也是目前氧化物複合正極發展的瓶頸之一。電解質與正極之間沒有好的接合或是於界面生成低鋰離子導性或無法鈍化界面反應的界面層均會造成很高的界面阻抗。除了鋰離子傳輸之外,正極材料本身的電容量及循環穩定性對於複合正極的能量密度和壽命也有很大的影響。本研究使用第一原理計算和熱力學相穩定性分析進行氧化物複合正極中的正極材料及正極/電解質界面的材料設計來增加複合正極的能量密度並且解決界面問題。
    正極材料方面,本研究分別針對高電容量的層狀正極材料進行成分設計及高電壓的尖晶石正極進行摻雜元素的設計。層狀正極主要針對不含鈷、高電壓、高結構穩定性做過度金屬組成的設計。經由計算設計出的(Ni, Mn, Fe)系統比起目前常見的(Ni, Mn, Co)(NMC)系統除了因為不含鈷而成本較低之外,還有工作電壓較高和脫鋰後穩定性較佳等優點。而尖晶石正極的部分則是對LiNi0.5Mn1.5O4 (LNMO)正極材料做摻雜元素的篩選。除了選出能夠穩定disordered LNMO相的摻雜元素之外,經由理論計算找出實驗上較難解釋的摻雜元素穩定disordered結構的機制。
    電極/電解質界面方面,本研究進行藉由摻雜引發電極/電解質界面反應生成界面保護層的材料設計。為了防止正極材料在燒結過程中熱分解,本研究以電場輔助燒結(FAST/SPS)來進行電解質及複合正極的燒結。在電場輔助燒結的部分進行了燒結前熱處理及燒結時施加不同壓力的研究。發現對Li0.33La0.55TiO3 (LLTO)電解質而言,燒結前的熱處理能夠去除表面雜質並且幫助燒結,而燒結後的導離子性則會隨著施加壓力增加而變高。在複合正極界面設計,本研究使用LNMO正極和LLTO電解質進行研究。藉由計算摻雜過的LNMO和LLTO之間的界面反應,能夠生成保護層的元素即能夠被篩選出來並且進行實驗驗證。計算找出摻雜Al能夠在LNMO和LLTO間生成LiAl5O8的保護層。實驗驗證證實Al摻雜確實能夠幫助LNMO/LLTO複合正極燒結,並且於界面生成的保護層在充電過後能夠保護LLTO。本研究在這部分展示了藉由摻雜使電擊/電解質界面生成保護層的材料設計概念,並且以理論計算進行較有效率的材料設計,避免耗時的實驗試誤法。

    Oxide-based all-solid-state Li batteries (ASSLiB) are promising energy storage devices for future battery applications, such as electric vehicles, because of their high energy density and high safety. This work focused one the cathode material and the cathode/electrolyte interface. One of the main problems in oxide-based ASSLiB fabrication is the sintering of composite cathode. To increase the usable depth of active material, people fabricate composite cathode through sintering the mixture of cathode and electrolyte powders. However, the thermal stability of cathode materials is often insufficient to withstand the sintering temperature (>1000 °C) and dwell time of conventional sintering for oxide electrolyte. The contact between particles and the interfacial stability are also essential in a composite cathode. Lack of contact between particles and unwanted interfacial reactions lead to high interfacial impedance. Other than cathode/electrolyte interface, the capacity and the stability of cathode materials are also important for pursuing high energy density. Materials design based on first principles calculation and thermodynamics was carried out for solving the cathode durability and cathode/electrolyte interfacial stability problems.
    For cathode materials, a composition design and a dopant design were done for high energy density layered cathode material and spinel cathode material, respectively. A composition design for high-voltage stable Co-free layered cathode material was performed through calculating the effects of individual element on oxygen stability, voltage, and phase stability. The trend of combining of elements was calculated to obtain the final composition with good stability and high voltage. A dopant design for stabilizing disordered LiNi0.5Mn1.5O4 (LNMO) was carried out through calculating the mechanism of dopants stabilizing the disordered structure and the ordered-to-disordered reaction energy in each doped system. Stable dopants and their preferred doping sites were obtained by phase stability evaluation. In this part, the mechanism of dopant stabilizing disordered LNMO was revealed, and the dopants for stabilizing disordered LNMO were suggested.
    As for cathode/electrolyte interface, a low-temperature sintering technique through field-assisted sintering technology/spark plasma sintering (FAST/SPS) and an interface design of in situ forming protective layer were performed for LNMO/Li0.33La0.55TiO3 (LLTO) composite cathode. The sintering temperature of LLTO was reduced through applying large mechanical pressure during sintering, and the processing time was decreased through current induced Joule heating. The effect of thermal pretreatment for surface impurities removal and applied mechanical pressure on LLTO FAST/SPS sintering were also investigated. Interfacial reaction between LNMO and LLTO which provides driving force for chemical bond formation was induced through doping in LNMO. Suitable dopant that can form stable interphase was selected through computation screening. The interfacial reactions between doped LNMO and LLTO were calculated to obtain the suitable dopant that can form a protective layer to prevent LLTO degradation during delithiation. Al was suggested to be the suitable dopant that can form LiAl5O8 as a protective layer between LNMO and LLTO. The Al-doped LNMO/LLTO composite cathode was sintered through FAST/SPS. A LiAl5O8 interface layer was successfully formed through annealing, and it was proven to be beneficial for LNMO/LLTO interfacial stability after delithiation. Computation-guided materials designs for cathode materials and composite cathode interface were performed in this work.

    摘要 I ABSTRACT II Acknowledgement IV Table of Contents V List of Tables VIII List of Figures IX Chapter 1. BACKGROUND 1 1.1. Li-ion batteries 1 1.1.1. Cathode materials 2 1.1.2. Anode materials 8 1.1.3. Electrolytes and Separators 9 1.2. All-solid-state Li batteries 10 1.2.1. Oxide-based all-solid-state Li batteries 12 1.2.2. Interfacial issues in oxide-based all-solid-state batteries 13 1.2.3. Current solutions for interfacial issues in oxide-based composite cathodes 16 1.3. First principles calculation and computational thermodynamics 19 1.3.1. Theory 19 1.3.2. Computational thermodynamics 20 1.4. Computational materials design for all-solid-state Li batteries 21 1.4.1. Composition design for electrode material 22 1.4.2. Dopant design for electrode material 23 1.4.3. Interface design for ASSB 23 Chapter 2. COMPUTATIONAL DESIGN OF CATHODE MATERIALS 27 2.1. Composition design-Computation design of high-voltage Co-free layered cathode material 27 2.1.1. Introduction 27 2.1.2. Method 29 2.1.2.1. First principles calculation 29 2.1.2.2. Correction terms for formation energy calculations involving DFT+U method 29 2.1.3. Results and discussion 33 2.1.3.1. Element effect on oxygen stability 33 2.1.3.2. Element effect on voltage 37 2.1.3.3. Design and phase stability evaluation of high voltage compositions 39 2.1.3.4. Structural stability analysis 43 2.1.4. Conclusion 45 2.2. Dopant design-Stabilizing disordered LNMO cathode material by doping 46 2.2.1. Introduction 46 2.2.2. Method 47 2.2.3. Results and discussion 48 2.2.3.1. Doping stability in LNMO 48 2.2.3.2. Effects of doping in ordered LNMO 51 2.2.3.3. Mechanism of disordered structure stabilization 53 2.2.4. Conclusion 58 Chapter 3. DESIGN OF IN SITU FORMED PROTECTIVE LAYER IN LNMO/LLTO COMPOSITE CATHODE 59 3.1. Interface design-Computational screening for dopant inducing in situ formation of protective layer between LNMO and LLTO 59 3.1.1. Introduction 59 3.1.2. Method 60 3.1.3. Results and discussion 60 3.1.3.1. Pristine LNMO/LLTO interfacial reaction before and after charging 60 3.1.3.2. Doped LNMO/LLTO interfacial reaction 62 3.1.3.3. Stability and properties of Li containing interphases 63 3.1.4. Conclusion 66 3.2. Field-assisted LLTO low-temperature sintering 67 3.2.1. Introduction 67 3.2.2. Method 68 3.2.2.1. Powder preparation 68 3.2.2.2. Characterization 68 3.2.2.3. Pellet sintering 69 3.2.2.4. Ionic conductivity measurement 71 3.2.3. Results and discussion 71 3.2.3.1. Effects of thermal pretreatment on LLTO particle morphology and total ionic conductivity 71 3.2.3.2. Investigation of surface impurities and thermal pretreatment influence on LLTO surface 73 3.2.3.3. Impact of applying mechanical pressure during sintering 76 3.2.3.4. Phase analysis for pressure-assisted sintered LLTO 82 3.2.4. Conclusion 83 3.3. Experimental verification for dopant-induced in situ interphase formation 84 3.3.1. Introduction 84 3.3.2. Method 84 3.3.2.1. Powder preparation 84 3.3.2.2. Dilatometry analysis 85 3.3.2.3. Composite cathode pellet preparation 85 3.3.2.4. Delithiated composite cathode preparation 85 3.3.2.5. Material characterization 85 3.3.2.6. Impedance analysis 86 3.3.3. Results and discussion 86 3.3.3.1. LNMO powder synthesis and pristine LNMO/LLTO and Al-doped LNMO/LLTO dilatometry analysis 86 3.3.3.2. Microstructure and phase analyses for as-sintered and annealed pristine LNMO/LLTO and Al-doped LNMO/LLTO 88 3.3.3.3. Impedance analysis 95 3.3.3.4. Interfacial stability of pristine LNMO/LLTO and Al-doped LNMO/LLTO after high-potential aging 99 3.3.4. Conclusion 102 Chapter 4. REFERENCES 103 Chapter 5. APPENDIX 123 5.1. Abbreviation Table 123 5.2. FAST/SPS experiment setup 124 5.3. Computation for in situ forming a protective layer in LTO/LLTO composite anode 124 5.4. Computation for in situ forming a separator between LNMO cathode and LTO anode 130 5.5. Procedure of computation-guided materials design and outlook 132

    1. Gao, X.-P.; Yang, H.-X., Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci. 2010, 3 (2), 174-189.
    2. Goodenough, J. B., How we made the Li-ion rechargeable battery. Nature Electronics 2018, 1 (3), 204-204.
    3. Ohzuku, T.; Brodd, R. J., An overview of positive-electrode materials for advanced lithium-ion batteries. Journal of Power Sources 2007, 174 (2), 449-456.
    4. Wang, H.; Jang, Y. I.; Huang, B.; Sadoway, D. R.; Chiang, Y. M., TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries. Journal of The Electrochemical Society 1999, 146 (2), 473-480.
    5. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy 2021, 6 (2), 123-134.
    6. Shimoda, K.; Oishi, M.; Matsunaga, T.; Murakami, M.; Yamanaka, K.; Arai, H.; Ukyo, Y.; Uchimoto, Y.; Ohta, T.; Matsubara, E.; Ogumi, Z., Direct observation of layered-to-spinel phase transformation in Li2MnO3 and the spinel structure stabilised after the activation process. Journal of Materials Chemistry A 2017, 5 (14), 6695-6707.
    7. Johannes, M. D.; Swider-Lyons, K.; Love, C. T., Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ionics 2016, 286, 83-89.
    8. Takahashi, Y.; Kijima, N.; Dokko, K.; Nishizawa, M.; Uchida, I.; Akimoto, J., Structure and electron density analysis of electrochemically and chemically delithiated LiCoO2 single crystals. Journal of Solid State Chemistry 2007, 180 (1), 313-321.
    9. Liu, H.; Tan, L., High rate performance of novel cathode material Li1.33Ni1/3Co1/3Mn1/3O2 for lithium ion batteries. Materials Chemistry and Physics 2011, 129 (3), 729-732.
    10. Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources 2013, 233, 121-130.
    11. Lee, S.-H.; Yoon, C. S.; Amine, K.; Sun, Y.-K., Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. Journal of Power Sources 2013, 234, 201-207.
    12. Hy, S.; Liu, H.; Zhang, M.; Qian, D.; Hwang, B.-J.; Meng, Y. S., Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries. Energy & Environmental Science 2016, 9 (6), 1931-1954.
    13. Rana, J.; Stan, M.; Kloepsch, R.; Li, J.; Schumacher, G.; Welter, E.; Zizak, I.; Banhart, J.; Winter, M., Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries. Advanced Energy Materials 2014, 4 (5), 1300998.
    14. Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J. M., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature materials 2013, 12 (9), 827-35.
    15. Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D., Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries. Advanced Energy Materials 2016, 6 (8), 1502398.
    16. Yu, H.; Zhou, H., High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. The journal of physical chemistry letters 2013, 4 (8), 1268-80.
    17. Sarkar, T.; Prakasha, K. R.; Bharadwaj, M. D.; Prakash, A. S., Role of transition metals in a charge transfer mechanism and oxygen removal in Li1.17Ni0.17Mn0.5Co0.17O2: experimental and first-principles analysis. Physical chemistry chemical physics : PCCP 2018, 20 (29), 19606-19613.
    18. Lu, J.; Lee, K. S., Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress. Materials Technology 2016, 31 (11), 628-641.
    19. Chung, K. Y.; Kim, K.-B., Investigations into capacity fading as a result of a Jahn–Teller distortion in 4V LiMn2O4 thin film electrodes. Electrochimica Acta 2004, 49 (20), 3327-3337.
    20. Tang, D.; Sun, Y.; Yang, Z.; Ben, L.; Gu, L.; Huang, X., Surface Structure Evolution of LiMn2O4 Cathode Material upon Charge/Discharge. Chemistry of Materials 2014, 26 (11), 3535-3543.
    21. Ouyang, C. Y.; Shi, S. Q.; Lei, M. S., Jahn–Teller distortion and electronic structure of LiMn2O4. Journal of Alloys and Compounds 2009, 474 (1-2), 370-374.
    22. Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117 (31), 15947-15957.
    23. Liu, D.; Zhu, W.; Trottier, J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C. M.; Goodenough, J. B.; Zaghib, K., Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv. 2014, 4 (1), 154-167.
    24. Wang, L.; Li, H.; Huang, X.; Baudrin, E., A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics 2011, 193 (1), 32-38.
    25. Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K., Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3̄m and P4332. Chemistry of Materials 2004, 16 (5), 906-914.
    26. Xiao, J.; Chen, X.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J.; Deng, Z.; Zheng, J.; Graff, G. L.; Nie, Z.; Choi, D.; Liu, J.; Zhang, J. G.; Whittingham, M. S., High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 2012, 24 (16), 2109-16.
    27. Ong, S. P.; Jain, A.; Hautier, G.; Kang, B.; Ceder, G., Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations. Electrochemistry Communications 2010, 12 (3), 427-430.
    28. Xu, Y.-N.; Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M.; Ching, W. Y., Electronic Structure and Electrical Conductivity of Undoped LiFePO4. Electrochemical and Solid-State Letters 2004, 7 (6), A131.
    29. Yamada, A.; Chung, S. C.; Hinokuma , K., Optimized LiFePO4 for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001, 148 (3), A224-A229.
    30. Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G., A Combined Computational/Experimental Study on LiNi1/3Co1/3Mn1/3O2. Chemistry of Materials 2003, 15 (19), 3676-3682.
    31. Fang, H.-s.; Wang, Z.-x.; Li, X.-h.; Guo, H.-j.; Peng, W.-j., Exploration of high capacity LiNi0.5Mn1.5O4 synthesized by solid-state reaction. Journal of Power Sources 2006, 153 (1), 174-176.
    32. Ota, H.; Sakata, Y.; Inoue, A.; Yamaguchi, S., Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode. Journal of The Electrochemical Society 2004, 151 (10), A1659-A1669.
    33. Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Pérez Vicente, C., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chemistry of Materials 2004, 16 (26), 5721-5725.
    34. Schweidler, S.; de Biasi, L.; Schiele, A.; Hartmann, P.; Brezesinski, T.; Janek, J., Volume Changes of Graphite Anodes Revisited: A Combined Operando X-ray Diffraction and In Situ Pressure Analysis Study. The Journal of Physical Chemistry C 2018, 122 (16), 8829-8835.
    35. Ohzuku, T.; Ueda, A.; Yamamoto, N., Zero‐Strain Insertion Material of Li [ Li1/3Ti5/3] O4 for Rechargeable Lithium Cells. Journal of The Electrochemical Society 1995, 142 (5), 1431.
    36. Deng, Y.; Fang, C.; Chen, G., The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. Journal of Power Sources 2016, 304, 81-101.
    37. Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K., Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. Journal of Power Sources 2010, 195 (8), 2372-2376.
    38. Zhong, K.; Xia, X.; Zhang, B.; Li, H.; Wang, Z.; Chen, L., MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources 2010, 195 (10), 3300-3308.
    39. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 2012, 24 (38), 5166-80.
    40. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.
    41. Yao, Y.; Liu, N.; McDowell, M. T.; Pasta, M.; Cui, Y., Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy & Environmental Science 2012, 5 (7), 7927.
    42. Loaiza, L. C.; Monconduit, L.; Seznec, V., Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism. Small 2020, 16 (5), e1905260.
    43. Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources 2011, 196 (1), 13-24.
    44. Wang, H.; Wang, C.; Tang, Y., Interface engineering toward high‐efficiency alloy anode for next‐generation energy storage device. EcoMat 2021, 3 (6).
    45. Nishikawa, K.; Mori, T.; Nishida, T.; Fukunaka, Y.; Rosso, M., Li dendrite growth and Li+ ionic mass transfer phenomenon. Journal of Electroanalytical Chemistry 2011, 661 (1), 84-89.
    46. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium-batteries. Nature 2001, 414, 359-367.
    47. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
    48. Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H.-J., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta 2004, 50 (2-3), 247-254.
    49. Golubkov, A. W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V., Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. RSC Advances 2015, 5 (70), 57171-57186.
    50. Hess, S.; Wohlfahrt-Mehrens, M.; Wachtler, M., Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements. Journal of The Electrochemical Society 2015, 162 (2), A3084.
    51. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
    52. Zhang, S. S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources 2007, 164 (1), 351-364.
    53. Hu, Y.-S., Batteries: Getting solid. Nature Energy 2016, 1 (4).
    54. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175.
    55. Arya, A.; Sharma, A. L., A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. Journal of Materials Science 2020, 55 (15), 6242-6304.
    56. Agrawal, R. C.; Pandey, G. P., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics 2008, 41 (22), 223001.
    57. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-62.
    58. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nature materials 2019, 18 (12), 1278-1291.
    59. Zheng, F.; Kotobuki, M.; Song, S.; Lai, M. O.; Lu, L., Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources 2018, 389, 198-213.
    60. Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H., Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. Adv Mater 2019, 31 (44), e1901131.
    61. Schreiber, A.; Rosen, M.; Waetzig, K.; Nikolowski, K.; Schiffmann, N.; Wiggers, H.; Küpers, M.; Fattakhova-Rohlfing, D.; Kuckshinrichs, W.; Guillon, O.; Finsterbusch, M., Oxide ceramic electrolytes for all-solid-state lithium batteries – cost-cutting cell design and environmental impact. Green Chemistry 2023, 25 (1), 399-414.
    62. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed Engl 2007, 46 (41), 7778-81.
    63. Thompson, T.; Yu, S.; Williams, L.; Schmidt, R. D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J. L.; Kioupakis, E.; Siegel, D. J.; Sakamoto, J., Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12. ACS Energy Letters 2017, 2 (2), 462-468.
    64. Xu, H.; Yu, Y.; Wang, Z.; Shao, G., A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides. Journal of Materials Chemistry A 2019, 7 (10), 5239-5247.
    65. Liu, Y.; Sun, Q.; Zhao, Y.; Wang, B.; Kaghazchi, P.; Adair, K. R.; Li, R.; Zhang, C.; Liu, J.; Kuo, L. Y.; Hu, Y.; Sham, T. K.; Zhang, L.; Yang, R.; Lu, S.; Song, X.; Sun, X., Stabilizing the Interface of NASICON Solid Electrolyte against Li Metal with Atomic Layer Deposition. ACS applied materials & interfaces 2018, 10 (37), 31240-31248.
    66. Tan, J.; Tiwari, A., Synthesis of Cubic Phase Li7La3Zr2O12 Electrolyte for Solid-State Lithium-Ion Batteries. Electrochemical and Solid-State Letters 2012, 15 (3), A37.
    67. Tsai, C.-L.; Dashjav, E.; Hammer, E.-M.; Finsterbusch, M.; Tietz, F.; Uhlenbruck, S.; Buchkremer, H. P., High conductivity of mixed phase Al-substituted Li7La3Zr2O12. Journal of Electroceramics 2015, 35 (1-4), 25-32.
    68. Thompson, T.; Wolfenstine, J.; Allen, J. L.; Johannes, M.; Huq, A.; David, I. N.; Sakamoto, J., Tetragonal vs. cubic phase stability in Al – free Ta doped Li7La3Zr2O12 (LLZO). J. Mater. Chem. A 2014, 2 (33), 13431-13436.
    69. Hu, Z.; Liu, H.; Ruan, H.; Hu, R.; Su, Y.; Zhang, L., High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceramics International 2016, 42 (10), 12156-12160.
    70. Bernuy-Lopez, C.; Manalastas, W.; Lopez del Amo, J. M.; Aguadero, A.; Aguesse, F.; Kilner, J. A., Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Chemistry of Materials 2014, 26 (12), 3610-3617.
    71. Park, K.; Yu, B.-C.; Jung, J.-W.; Li, Y.; Zhou, W.; Gao, H.; Son, S.; Goodenough, J. B., Electrochemical Nature of the Cathode Interface for a Solid-State Lithium-Ion Battery: Interface between LiCoO2 and Garnet-Li7La3Zr2O12. Chemistry of Materials 2016, 28 (21), 8051-8059.
    72. Xiao, W.; Wang, J.; Fan, L.; Zhang, J.; Li, X., Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials 2019, 19, 379-400.
    73. Duluard, S.; Paillassa, A.; Puech, L.; Vinatier, P.; Turq, V.; Rozier, P.; Lenormand, P.; Taberna, P.-L.; Simon, P.; Ansart, F., Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. Journal of the European Ceramic Society 2013, 33 (6), 1145-1153.
    74. Zhu, Y.; He, X.; Mo, Y., Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS applied materials & interfaces 2015, 7 (42), 23685-93.
    75. Hao, X.; Zhao, Q.; Su, S.; Zhang, S.; Ma, J.; Shen, L.; Yu, Q.; Zhao, L.; Liu, Y.; Kang, F.; He, Y. B., Constructing Multifunctional Interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by Magnetron Sputtering for Highly Stable Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2019, 9 (34), 1901604.
    76. Chen, C. H.; Amine, K., Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics 2001, 144 (1), 51-57.
    77. Tan, F.; An, H.; Li, N.; Du, J.; Peng, Z., Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer. Nanomaterials 2021, 11 (4), 989.
    78. Zhu, Y.-R.; Yi, T.-F.; Li, X.-Y.; Xie, Y.; Luo, S., Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Materials Letters 2019, 239, 56-58.
    79. Qian, D.; Xu, B.; Cho, H.-M.; Hatsukade, T.; Carroll, K. J.; Meng, Y. S., Lithium Lanthanum Titanium Oxides: A Fast Ionic Conductive Coating for Lithium-Ion Battery Cathodes. Chemistry of Materials 2012, 24 (14), 2744-2751.
    80. Sasano, S.; Ishikawa, R.; Kawahara, K.; Kimura, T.; Ikuhara, Y. H.; Shibata, N.; Ikuhara, Y., Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Applied Physics Letters 2020, 116 (4), 043901.
    81. Huang, Y.; He, L.; Zhu, X., Low temperature synthesis of Li0.33La0.55TiO3 solid electrolyte with Al3+ doping by a modified Pechini method. Ionics 2022, 28 (4), 1739-1751.
    82. Borštnar, P.; Žuntar, J.; Spreitzer, M.; Dražič, G.; Daneu, N., Exaggerated grain growth and the development of coarse-grained microstructures in lithium lanthanum titanate perovskite ceramics. Journal of the European Ceramic Society 2023, 43 (3), 1017-1027.
    83. Wolfenstine, J.; Allen, J. L.; Sakamoto, J.; Siegel, D. J.; Choe, H., Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 2017, 24 (5), 1271-1276.
    84. Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J. T.; Nam, K.-W.; Jung, H.-G.; Chung, K. Y., A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Materials 2020, 25, 224-250.
    85. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C., Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. Advanced Energy Materials 2016, 6 (8), 1501590.
    86. Tsai, C.-L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O., Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. ACS applied materials & interfaces 2016, 8 (16), 10617-10626.
    87. Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J., Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12. Chemistry of Materials 2017, 29 (18), 7961-7968.
    88. Koshikawa, H.; Matsuda, S.; Kamiya, K.; Miyayama, M.; Kubo, Y.; Uosaki, K.; Hashimoto, K.; Nakanishi, S., Electrochemical impedance analysis of the Li/Au-Li7La3Zr2O12 interface during Li dissolution/deposition cycles: Effect of pre-coating Li7La3Zr2O12 with Au. Journal of Electroanalytical Chemistry 2019, 835, 143-149.
    89. Fu, K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S. D.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances 2017, 3 (4), e1601659.
    90. Dubey, R.; Sastre, J.; Cancellieri, C.; Okur, F.; Forster, A.; Pompizii, L.; Priebe, A.; Romanyuk, Y. E.; Jeurgens, L. P. H.; Kovalenko, M. V.; Kravchyk, K. V., Building a Better Li‐Garnet Solid Electrolyte/Metallic Li Interface with Antimony. Advanced Energy Materials 2021, 11 (39), 2102086.
    91. Fu, K. K.; Gong, Y.; Fu, Z.; Xie, H.; Yao, Y.; Liu, B.; Carter, M.; Wachsman, E.; Hu, L., Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. Angew Chem Int Ed Engl 2017, 56 (47), 14942-14947.
    92. Liu, B.; Du, M.; Chen, B.; Zhong, Y.; Zhou, J.; Ye, F.; Liao, K.; Zhou, W.; Cao, C.; Cai, R.; Shao, Z., A simple strategy that may effectively tackle the anode-electrolyte interface issues in solid-state lithium metal batteries. Chemical Engineering Journal 2022, 427, 131001.
    93. Lin, C.-a.; Lin, S.-k., Issues, Developments, and Computation Analyses of Interfacial Stability in All-Solid-State Li Batteries. JOM 2022, 74 (12), 4654-4663.
    94. Krauskopf, T.; Hartmann, H.; Zeier, W. G.; Janek, J., Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12. ACS applied materials & interfaces 2019, 11 (15), 14463-14477.
    95. Krauskopf, T.; Mogwitz, B.; Rosenbach, C.; Zeier, W. G.; Janek, J., Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Electrolytes as a Function of Temperature and Pressure. Advanced Energy Materials 2019, 1902568.
    96. Sutorik, A. C.; Cooper, C.; Green, M. D.; Wolfenstine, J.; Gilde, G., The Effect of Different La-Containing Starting Materials on the Synthesis, Sintering, and Li+-Conductivity of Li3xLa2/3-xTiO3. JOURNAL OF CERAMIC SCIENCE AND TECHNOLOGY 2013, 4 (2), 59-68.
    97. Mariappan, C. R.; Yada, C.; Rosciano, F.; Roling, B., Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. Journal of Power Sources 2011, 196 (15), 6456-6464.
    98. Antolini, E.; Ferretti, M., Synthesis and Thermal Stability of LiCoO2. Journal of Solid State Chemistry 1995, 117 (1), 1-7.
    99. Uhlenbruck, S.; Dornseiffer, J.; Lobe, S.; Dellen, C.; Tsai, C.-L.; Gotzen, B.; Sebold, D.; Finsterbusch, M.; Guillon, O., Cathode-electrolyte material interactions during manufacturing of inorganic solid-state lithium batteries. Journal of Electroceramics 2016, 38 (2-4), 197-206.
    100. Guo, X.; Hao, L.; Yang, Y.; Wang, Y.; Lu, Y.; Yu, H., High cathode utilization efficiency through interface engineering in all-solid-state lithium-metal batteries. Journal of Materials Chemistry A 2019.
    101. Jin, Y.-C.; Lin, C.-Y.; Duh, J.-G., Improving rate capability of high potential LiNi0.5Mn1.5O4−x cathode materials via increasing oxygen non-stoichiometries. Electrochimica Acta 2012, 69, 45-50.
    102. Valiyaveettil-SobhanRaj, S.; Cid, R.; Thompson, T.; Bonilla, F.; G, A. L.; Aguesse, F.; Casas-Cabanas, M., High-Temperature Thermal Reactivity and Interface Evolution of the NMC-LATP-Carbon Composite Cathode. ACS applied materials & interfaces 2023.
    103. Xu, P.; Rheinheimer, W.; Shuvo, S. N.; Qi, Z.; Levit, O.; Wang, H.; Ein‐Eli, Y.; Stanciu, L. A., Origin of High Interfacial Resistances in Solid‐State Batteries: Interdiffusion and Amorphous Film Formation in Li0.33La0.57TiO3/LiMn2O4 Half Cells. ChemElectroChem 2019, 6 (17), 4576-4585.
    104. Xu, P.; Rheinheimer, W.; Mishra, A.; Shuvo, S. N.; Qi, Z.; Wang, H.; Dongare, A. M.; Stanciu, L. A., Origin of High Interfacial Resistance in Solid-State Batteries: LLTO/LCO Half-Cells. ChemElectroChem 2021, 8 (10), 1847-1857.
    105. Hlushkou, D.; Reising, A. E.; Kaiser, N.; Spannenberger, S.; Schlabach, S.; Kato, Y.; Roling, B.; Tallarek, U., The influence of void space on ion transport in a composite cathode for all-solid-state batteries. Journal of Power Sources 2018, 396, 363-370.
    106. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chemistry of Materials 2015, 28 (1), 266-273.
    107. Zhu, Y.; He, X.; Mo, Y., First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. Journal of Materials Chemistry A 2016, 4 (9), 3253-3266.
    108. Tsai, C. L.; Thuy Tran, N. T.; Schierholz, R.; Liu, Z.; Windmüller, A.; Lin, C.-a.; Xu, Q.; Lu, X.; Yu, S.; Tempel, H.; Kungl, H.; Lin, S.-k.; Eichel, R.-A., Instability of Ga-substituted Li7La3Zr2O12 toward metallic Li. Journal of Materials Chemistry A 2022.
    109. Zhu, Y.; Connell, J. G.; Tepavcevic, S.; Zapol, P.; Garcia‐Mendez, R.; Taylor, N. J.; Sakamoto, J.; Ingram, B. J.; Curtiss, L. A.; Freeland, J. W.; Fong, D. D.; Markovic, N. M., Dopant‐Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal. Advanced Energy Materials 2019, 9 (12), 1803440.
    110. Tadanaga, K.; Takano, R.; Ichinose, T.; Mori, S.; Hayashi, A.; Tatsumisago, M., Low temperature synthesis of highly ion conductive Li7La3Zr2O12–Li3BO3 composites. Electrochemistry Communications 2013, 33, 51-54.
    111. Han, F.; Yue, J.; Chen, C.; Zhao, N.; Fan, X.; Ma, Z.; Gao, T.; Wang, F.; Guo, X.; Wang, C., Interphase Engineering Enabled All-Ceramic Lithium Battery. Joule 2018, 2 (3), 497-508.
    112. Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L.; Ma, R.; Fukuda, K.; Osada, M.; Sasaki, T., LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochemistry Communications 2007, 9 (7), 1486-1490.
    113. Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T., Interfacial modification for high-power solid-state lithium batteries. Solid State Ionics 2008, 179 (27-32), 1333-1337.
    114. Kato, T.; Hamanaka, T.; Yamamoto, K.; Hirayama, T.; Sagane, F.; Motoyama, M.; Iriyama, Y., In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. Journal of Power Sources 2014, 260, 292-298.
    115. Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M., Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Advanced Engineering Materials 2014, 16 (7), 830-849.
    116. Laptev, A. M.; Zheng, H.; Bram, M.; Finsterbusch, M.; Guillon, O., High-pressure field assisted sintering of half-cell for all-solid-state battery. Materials Letters 2019, 247, 155-158.
    117. Ihrig, M.; Finsterbusch, M.; Tsai, C.-L.; Laptev, A. M.; Tu, C.-h.; Bram, M.; Sohn, Y. J.; Ye, R.; Sevinc, S.; Lin, S.-k.; Fattakhova-Rohlfing, D.; Guillon, O., Low temperature sintering of fully inorganic all-solid-state batteries – Impact of interfaces on full cell performance. Journal of Power Sources 2021, 482, 228905.
    118. Ihrig, M.; Finsterbusch, M.; Laptev, A. M.; Tu, C.-h.; Tran, N. T. T.; Lin, C.-a.; Kuo, L.-Y.; Ye, R.; Sohn, Y. J.; Kaghazchi, P.; Lin, S.-k.; Fattakhova-Rohlfing, D.; Guillon, O., Study of LiCoO2/Li7La3Zr2O12:Ta Interface Degradation in All-Solid-State Lithium Batteries. ACS applied materials & interfaces 2022, 14 (9), 11288-11299.
    119. Ihrig, M.; Kuo, L.-Y.; Lobe, S.; Laptev, A. M.; Lin, C.-a.; Tu, C.-h.; Ye, R.; Kaghazchi, P.; Cressa, L.; Eswara, S.; Lin, S.-k.; Guillon, O.; Fattakhova-Rohlfing, D.; Finsterbusch, M., Thermal Recovery of the Electrochemically Degraded LiCoO2/Li7La3Zr2O12:Al,Ta Interface in an All-Solid-State Lithium Battery. ACS applied materials & interfaces 2023.
    120. Guo, R.-F.; Mao, H.-R.; Zhao, Z.-T.; Shen, P., Ultrafast high-temperature sintering of bulk oxides. Scripta Materialia 2021, 193, 103-107.
    121. Ihrig, M.; Mishra, T. P.; Scheld, W. S.; Häuschen, G.; Rheinheimer, W.; Bram, M.; Finsterbusch, M.; Guillon, O., Li7La3Zr2O12 solid electrolyte sintered by the ultrafast high-temperature method. Journal of the European Ceramic Society 2021, 41 (12), 6075-6079.
    122. Schrödinger, E., An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review 1926, 28 (6), 1049-1070.
    123. Hartree, D. R., The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 24 (1), 89-110.
    124. Møller, C.; Plesset, M. S., Note on an Approximation Treatment for Many-Electron Systems. Physical Review 1934, 46 (7), 618-622.
    125. Čížek, J., On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell‐Type Expansion Using Quantum‐Field Theoretical Methods. The Journal of Chemical Physics 1966, 45 (11), 4256-4266.
    126. David Sherrill, C.; Schaefer, H. F., The Configuration Interaction Method: Advances in Highly Correlated Approaches. In Advances in Quantum Chemistry, Löwdin, P.-O.; Sabin, J. R.; Zerner, M. C.; Brändas, E., Eds. Academic Press: 1999; Vol. 34, pp 143-269.
    127. Nakano, H., Quasidegenerate perturbation theory with multiconfigurational self‐consistent‐field reference functions. The Journal of Chemical Physics 1993, 99 (10), 7983-7992.
    128. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133-A1138.
    129. Jain, A.; Shin, Y.; Persson, K. A., Computational predictions of energy materials using density functional theory. Nature Reviews Materials 2016, 1 (1), 15004.
    130. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.
    131. Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y. I.; Huang, B., Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 1998, 392 (6677), 694-696.
    132. Kim, S.; Ma, X.; Ong, S. P.; Ceder, G., A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. Physical chemistry chemical physics : PCCP 2012, 14 (44), 15571-8.
    133. Reed, J.; Ceder, G.; Van Der Ven, A., Layered-to-Spinel Phase Transition in LixMnO2. Electrochemical and Solid-State Letters 2001, 4 (6), A78.
    134. Ong, S. P.; Wang, L.; Kang, B.; Ceder, G., Li−Fe−P−O2 Phase Diagram from First Principles Calculations. Chemistry of Materials 2008, 20 (5), 1798-1807.
    135. Das, H.; Urban, A.; Huang, W.; Ceder, G., First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials. Chemistry of Materials 2017, 29 (18), 7840-7851.
    136. Kong, F.; Longo, R. C.; Park, M.-S.; Yoon, J.; Yeon, D.-H.; Park, J.-H.; Wang, W.-H.; Kc, S.; Doo, S.-G.; Cho, K., Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries. Journal of Materials Chemistry A 2015, 3 (16), 8489-8500.
    137. Kim, Y.; Kim, D.; Kang, S., Experimental and First-Principles Thermodynamic Study of the Formation and Effects of Vacancies in Layered Lithium Nickel Cobalt Oxides. Chemistry of Materials 2011, 23 (24), 5388-5397.
    138. Schipper, F.; Dixit, M.; Kovacheva, D.; Talianker, M.; Haik, O.; Grinblat, J.; Erickson, E. M.; Ghanty, C.; Major, D. T.; Markovsky, B.; Aurbach, D., Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. Journal of Materials Chemistry A 2016, 4 (41), 16073-16084.
    139. Ma, X.; Hautier, G.; Jain, A.; Doe, R.; Ceder, G., Improved Capacity Retention for LiVO2 by Cr Substitution. Journal of the Electrochemical Society 2012, 160 (2), A279-A284.
    140. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G., Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science 2014, 343 (6170), 519.
    141. Urban, A.; Lee, J.; Ceder, G., The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes. Advanced Energy Materials 2014, 4 (13), 1400478.
    142. Urban, A.; Matts, I.; Abdellahi, A.; Ceder, G., Computational Design and Preparation of Cation-Disordered Oxides for High-Energy-Density Li-Ion Batteries. Advanced Energy Materials 2016, 6 (15), 1600488.
    143. Urban, A.; Abdellahi, A.; Dacek, S.; Artrith, N.; Ceder, G., Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides. Phys Rev Lett 2017, 119 (17), 176402.
    144. Richards, W. D.; Dacek, S. T.; Kitchaev, D. A.; Ceder, G., Fluorination of Lithium-Excess Transition Metal Oxide Cathode Materials. Advanced Energy Materials 2018, 8 (5), 1701533.
    145. Lee, J.; Kitchaev, D. A.; Kwon, D. H.; Lee, C. W.; Papp, J. K.; Liu, Y. S.; Lun, Z.; Clement, R. J.; Shi, T.; McCloskey, B. D.; Guo, J.; Balasubramanian, M.; Ceder, G., Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 2018, 556 (7700), 185-190.
    146. Tsai, P.-c.; Nasara, R. N.; Shen, Y.-c.; Liang, C.-c.; Chang, Y.-w.; Hsu, W.-D.; Thuy Tran, N. T.; Lin, S.-k., Ab initio phase stability and electronic conductivity of the doped-Li4Ti5O12 anode for Li-ion batteries. Acta Materialia 2019, 175, 196-205.
    147. Tsai, P.-c.; Hsu, W.-d.; Lin, S.-k., Atomistic Structure and Ab Initio Electrochemical Properties of Li4Ti5O12 Defect Spinel for Li Ion Batteries. Journal of the Electrochemical Society 2014, 161 (3), A439-A444.
    148. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
    149. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    150. Tian, Y.; Shi, T.; Richards, W. D.; Li, J.; Kim, J. C.; Bo, S.-H.; Ceder, G., Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy & Environmental Science 2017, 10 (5), 1150-1166.
    151. Miara, L. J.; Richards, W. D.; Wang, Y. E.; Ceder, G., First-Principles Studies on Cation Dopants and Electrolyte|Cathode Interphases for Lithium Garnets. Chemistry of Materials 2015, 27 (11), 4040-4047.
    152. Miara, L.; Windmuller, A.; Tsai, C.-L.; Richards, W. D.; Ma, Q.; Uhlenbruck, S.; Guillon, O.; Ceder, G., About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature. ACS applied materials & interfaces 2016, 8 (40), 26842-26850.
    153. Nolan, A. M.; Wachsman, E. D.; Mo, Y., Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries. Energy Storage Materials 2021, 41, 571-580.
    154. Xiao, Y.; Miara, L. J.; Wang, Y.; Ceder, G., Computational Screening of Cathode Coatings for Solid-State Batteries. Joule 2019, 3 (5), 1252-1275.
    155. Bresser, D.; Hosoi, K.; Howell, D.; Li, H.; Zeisel, H.; Amine, K.; Passerini, S., Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources 2018, 382, 176-178.
    156. Ahmed, S.; Nelson, P. A.; Gallagher, K. G.; Susarla, N.; Dees, D. W., Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. Journal of Power Sources 2017, 342, 733-740.
    157. Olivetti, E. A.; Ceder, G.; Gaustad, G. G.; Fu, X., Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule 2017, 1 (2), 229-243.
    158. Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K., Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chemistry of Materials 2018, 30 (3), 1155-1163.
    159. Reed, J.; Ceder, G., Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation. Chemical Reviews 2004, 104 (10), 4513-4534.
    160. Griffith, J. S.; Orgel, L. E., Ligand-field theory. Quarterly Reviews 1957, 11 (4), 381.
    161. Seymour, I. D.; Wales, D. J.; Grey, C. P., Preventing Structural Rearrangements on Battery Cycling: A First-Principles Investigation of the Effect of Dopants on the Migration Barriers in Layered Li0.5MnO2. The Journal of Physical Chemistry C 2016, 120 (35), 19521-19530.
    162. Dixit, M.; Kosa, M.; Lavi, O. S.; Markovsky, B.; Aurbach, D.; Major, D. T., Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles. Physical chemistry chemical physics : PCCP 2016, 18 (9), 6799-812.
    163. Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat Chem 2016, 8 (7), 692-7.
    164. Seo, D.-H.; Urban, A.; Ceder, G., Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides. Physical Review B 2015, 92 (11).
    165. Xie, Q.; Li, W.; Manthiram, A., A Mg-Doped High-Nickel Layered Oxide Cathode Enabling Safer, High-Energy-Density Li-Ion Batteries. Chemistry of Materials 2019, 31 (3), 938-946.
    166. Chen, H.; Dawson, J. A.; Harding, J. H., Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. Journal of Materials Chemistry A 2014, 2 (21), 7988.
    167. Mu, L.; Lin, R.; Xu, R.; Han, L.; Xia, S.; Sokaras, D.; Steiner, J. D.; Weng, T. C.; Nordlund, D.; Doeff, M. M.; Liu, Y.; Zhao, K.; Xin, H. L.; Lin, F., Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. Nano Lett 2018, 18 (5), 3241-3249.
    168. Ma, X.; Kang, K.; Ceder, G.; Meng, Y. S., Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. Journal of Power Sources 2007, 173 (1), 550-555.
    169. Pang, W. K.; Lee, J. Y.; Wei, Y. S.; Wu, S. H., Preparation and characterization of Cr-doped LiMnO2 cathode materials by Pechini's method for lithium ion batteries. Materials Chemistry and Physics 2013, 139 (1), 241-246.
    170. Kikkawa, J.; Akita, T.; Tabuchi, M.; Shikano, M.; Tatsumi, K.; Kohyama, M., Real-Space Observation of Li Extraction∕Insertion in Li1.2Mn0.4Fe0.4O2 Positive Electrode Material for Li-Ion Batteries. Electrochemical and Solid-State Letters 2008, 11 (11), A183.
    171. Liu, G. B.; Liu, H.; Shi, Y. F., The synthesis and electrochemical properties of xLi2MnO3–(1−x)MO2(M=Mn1/3Ni1/3Fe1/3) via co-precipitation method. Electrochimica Acta 2013, 88, 112-116.
    172. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77 (18), 3865-3868.
    173. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979.
    174. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-50.
    175. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169-11186.
    176. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 2013, 1 (1), 011002.
    177. Wang, L.; Maxisch, T.; Ceder, G., Oxidation energies of transition metal oxides within the GGA+U framework. Physical Review B 2006, 73 (19).
    178. Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G., Formation enthalpies by mixing GGA and GGA+U calculations. Physical Review B 2011, 84 (4).
    179. Kubaschewski, O.; Alcock, C.; Spencer, P., Materials Thermochemistry, 6th ed. Oxford, Pergamom Press 1993.
    180. Chase, M.; Davies, C.; Downey, J.; Frurip, D.; McDonald, R.; Syverud, A., J. Phys. Chem. Ref. Data. JANAF Thermochemical Tables 1998, 4.
    181. Arroyo y de Dompablo, M. E.; Ceder, G., First-principles calculations on LixNiO2: phase stability and monoclinic distortion. Journal of Power Sources 2003, 119-121, 654-657.
    182. Barker, J.; Saidi, M. Y.; Swoyer, J. L., Lithium insertion properties of the layered LiMoO2 (R3 ̅m) made by a novel carbothermal reduction method. Solid State Ionics 2003, 158 (3-4), 261-267.
    183. Cho, J.; Kim, T.-J.; Kim, Y. J.; Park, B., High-Performance ZrO2-Coated LiNiO2 Cathode Material. Electrochemical and Solid-State Letters 2001, 4 (10), A159-A161.
    184. Sun, Y. K.; Lee, D. J.; Lee, Y. J.; Chen, Z.; Myung, S. T., Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS applied materials & interfaces 2013, 5 (21), 11434-40.
    185. Hirayama, M.; Tomita, H.; Kubota, K.; Kanno, R., Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode. Journal of Power Sources 2011, 196 (16), 6809-6814.
    186. Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N., Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochemistry Communications 2010, 12 (3), 355-358.
    187. Hautier, G.; Ong, S. P.; Jain, A.; Moore, C. J.; Ceder, G., Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Physical Review B 2012, 85 (15).
    188. Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A., Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge. Chemistry of Materials 2014, 26 (2), 1084-1092.
    189. Lin, Q.; Guan, W.; Meng, J.; Huang, W.; Wei, X.; Zeng, Y.; Li, J.; Zhang, Z., A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy 2018, 54, 313-321.
    190. Shitara, K.; Yoshiya, M.; Umeda, J.; Kondoh, K., Substantial role of charge transfer on the diffusion mechanism of interstitial elements in α-titanium: A First-principles study. Scripta Materialia 2021, 203, 114065.
    191. Penki, T. R.; Shanmughasundaram, D.; Kishore, B.; Jeyaseelan, A. V.; Subramani, A. K.; Munichandraiah, N., Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery. Journal of The Electrochemical Society 2016, 163 (8), A1493-A1502.
    192. Karthikeyan, K.; Amaresh, S.; Lee, G. W.; Aravindan, V.; Kim, H.; Kang, K. S.; Kim, W. S.; Lee, Y. S., Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries. Electrochimica Acta 2012, 68, 246-253.
    193. Marusczyk, A.; Albina, J.-M.; Hammerschmidt, T.; Drautz, R.; Eckl, T.; Henkelman, G., Oxygen activity and peroxide formation as charge compensation mechanisms in Li2MnO3. Journal of Materials Chemistry A 2017, 5 (29), 15183-15190.
    194. Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Materials Today 2018, 21 (8), 825-833.
    195. Kim, J.-H.; Huq, A.; Chi, M.; Pieczonka, N. P. W.; Lee, E.; Bridges, C. A.; Tessema, M. M.; Manthiram, A.; Persson, K. A.; Powell, B. R., Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi0.5Mn1.5O4 for Li-Ion Batteries. Chemistry of Materials 2014, 26 (15), 4377-4386.
    196. Strobel, P.; Ibarra-Palos, A.; Anne, M.; Poinsignon, C.; Crisci, A., Cation ordering in Li2Mn3MO8 spinels: structural and vibration spectroscopy studies. Solid State Sciences 2003, 5 (7), 1009-1018.
    197. Chen, Y.; Sun, Y.; Huang, X., Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping. Computational Materials Science 2016, 115, 109-116.
    198. Wang, H.; Tan, T. A.; Yang, P.; Lai, M. O.; Lu, L., High-Rate Performances of the Ru-Doped Spinel LiNi0.5Mn1.5O4: Effects of Doping and Particle Size. The Journal of Physical Chemistry C 2011, 115 (13), 6102-6110.
    199. Mao, J.; Dai, K.; Xuan, M.; Shao, G.; Qiao, R.; Yang, W.; Battaglia, V. S.; Liu, G., Effect of Chromium and Niobium Doping on the Morphology and Electrochemical Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material. ACS applied materials & interfaces 2016, 8 (14), 9116-24.
    200. Zhong, G. B.; Wang, Y. Y.; Zhang, Z. C.; Chen, C. H., Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta 2011, 56 (18), 6554-6561.
    201. Cui, X.; Zhou, X.; Liang, W.; Tuo, K.; Wang, P.; Cui, X.; Zhang, L.; Li, S., Exploring the action mechanism of magnesium in different cations sites for LiNi0.5Mn1.5O4 cathode materials. Materials Today Sustainability 2022, 17, 100105.
    202. Wang, J.; Lin, W.; Wu, B.; Zhao, J., Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Electrochimica Acta 2014, 145, 245-253.
    203. Shin, D. W.; Manthiram, A., Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries. Electrochemistry Communications 2011, 13 (11), 1213-1216.
    204. Sanchez, J. M., Cluster expansions and the configurational energy of alloys. Physical Review B 1993, 48 (18), 14013-14015.
    205. van de Walle, A., Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 2009, 33 (2), 266-278.
    206. van de Walle, A.; Asta, M.; Ceder, G., The alloy theoretic automated toolkit: A user guide. Calphad 2002, 26 (4), 539-553.
    207. van de Walle, A.; Tiwary, P.; de Jong, M.; Olmsted, D. L.; Asta, M.; Dick, A.; Shin, D.; Wang, Y.; Chen, L. Q.; Liu, Z. K., Efficient stochastic generation of special quasirandom structures. Calphad 2013, 42, 13-18.
    208. Walle, A. v. d.; Asta, M., Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams. Modelling and Simulation in Materials Science and Engineering 2002, 10 (5), 521.
    209. Chong, J.; Xun, S.; Zhang, J.; Song, X.; Xie, H.; Battaglia, V.; Wang, R., Li3PO4-coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries. Chemistry 2014, 20 (24), 7479-85.
    210. Alva, G.; Kim, C.; Yi, T.; Cook, J. B.; Xu, L.; Nolis, G. M.; Cabana, J., Surface Chemistry Consequences of Mg-Based Coatings on LiNi0.5Mn1.5O4 Electrode Materials upon Operation at High Voltage. The Journal of Physical Chemistry C 2014, 118 (20), 10596-10605.
    211. Hayamizu, K.; Seki, S.; Haishi, T., 7Li NMR diffusion studies in micrometre-space for perovskite-type Li0.33La0.55TiO3 (LLTO) influenced by grain boundaries. Solid State Ionics 2018, 326, 37-47.
    212. Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M., High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86 (10), 689-693.
    213. Trong, L. D.; Thao, T. T.; Dinh, N. N., Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics 2015, 278, 228-232.
    214. Janani, N.; Deviannapoorani, C.; Dhivya, L.; Murugan, R., Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv. 2014, 4 (93), 51228-51238.
    215. Okumura, T.; Ina, T.; Orikasa, Y.; Arai, H.; Uchimoto, Y.; Ogumi, Z., Effect of average and local structures on lithium ion conductivity in La2/3−xLi3xTiO3. Journal of Materials Chemistry 2011, 21 (27), 10195.
    216. Romero, M.; Faccio, R.; Vázquez, S.; Davyt, S.; Mombrú, Á. W., Experimental and theoretical Raman study on the structure and microstructure of Li0.30La0.57TiO3 electrolyte prepared by the sol-gel method in acetic medium. Ceramics International 2016, 42 (14), 15414-15422.
    217. Wu, J.; Chen, L.; Song, T.; Zou, Z.; Gao, J.; Zhang, W.; Shi, S., A review on structural characteristics, lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyte Li3xLa2∕3−xTiO3. Functional Materials Letters 2017, 10 (03), 1730002.
    218. Zhang, H.; Liu, X.; Qi, Y.; Liu, V., On the La2/3−xLi3xTiO3/Al2O3 composite solid-electrolyte for Li-ion conduction. Journal of Alloys and Compounds 2013, 577, 57-63.
    219. Boulant, A.; Maury, P.; Emery, J.; Buzare, J.-Y.; Bohnke, O., Efficient Ion Exchange of H+ for Li+ in (Li0.30La0.57◻0.13)TiO3 Perovskite in Water: Protons As a Probe for Li Location. Chemistry of Materials 2009, 21 (11), 2209-2217.
    220. Ye, R.; Ihrig, M.; Imanishi, N.; Finsterbusch, M.; Figgemeier, E., A Review on Li+ /H+ Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water. ChemSusChem 2021, 14 (20), 4397-4407.
    221. Kotobuki, M.; Suzuki, Y.; Munakata, H.; Kanamura, K.; Sato, Y.; Yamamoto, K.; Yoshida, T., Compatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery. Journal of Power Sources 2010, 195 (17), 5784-5788.
    222. Gellert, M.; Dashjav, E.; Grüner, D.; Ma, Q.; Tietz, F., Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. Ionics 2018, 24 (4), 1001-1006.
    223. Bertrand, M.; Rousselot, S.; Aymé-Perrot, D.; Dollé, M., Compatibility assessment of solid ceramic electrolytes and active materials based on thermal dilatation for the development of solid-state batteries. Materials Advances 2021, 2 (9), 2989-2999.
    224. Wakasugi, J.; Munakata, H.; Kanamura, K., Thermal Stability of Various Cathode Materials against Li6.25Al0.25La3Zr2O12 Electrolyte. Electrochemistry 2017, 85 (2), 77-81.
    225. Huo, H.; Chen, Y.; Zhao, N.; Lin, X.; Luo, J.; Yang, X.; Liu, Y.; Guo, X.; Sun, X., In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries. Nano Energy 2019, 61, 119-125.
    226. Laguna, M. A.; Sanjuán, M. L.; Várez, A.; Sanz, J., Lithium dynamics and disorder effects in the Raman spectrum of La(2−x)/3LixTiO3. Physical Review B 2002, 66 (5).
    227. Yang, H.; Abdullah, M.; Bright, J.; Hu, W.; Kittilstved, K.; Xu, Y.; Wang, C.; Zhang, X.; Wu, N., Polymer-ceramic composite electrolytes for all-solid-state lithium batteries: Ionic conductivity and chemical interaction enhanced by oxygen vacancy in ceramic nanofibers. Journal of Power Sources 2021, 495, 229796.
    228. Bhattacharya, S.; Riahi, A. R.; Alpas, A. T., Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes – SEI formation and graphite damage mechanisms. Carbon 2014, 77, 99-112.
    229. Cavanagh, A. S.; Lee, Y.; Yoon, B.; George, S., Atomic Layer Deposition of LiOH and Li2CO3 Using Lithium t-Butoxide as the Lithium Source. ECS Transactions 2010, 33 (2), 223-229.
    230. Pasero, D.; Reeves, N.; Pralong, V.; West, A. R., Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4 − δ. Journal of The Electrochemical Society 2008, 155 (4), A282.
    231. Yang, F.; Lin, S.; Guo, Z.; Shao, Y.; Zhang, B.; Zhang, X.; Yan, S.; Volinsky, A. A., Suppressed voltage decay and improved electrochemical performance by coating LiAl5O8 on the surface of Li1.2Mn0.54Ni0.13Co0.13O2. Journal of Alloys and Compounds 2019, 805, 1034-1043.
    232. Zhang, W.; Weber, D. A.; Weigand, H.; Arlt, T.; Manke, I.; Schroder, D.; Koerver, R.; Leichtweiss, T.; Hartmann, P.; Zeier, W. G.; Janek, J., Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS applied materials & interfaces 2017, 9 (21), 17835-17845.
    233. Sakuda, A.; Hayashi, A.; Tatsumisago, M., Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy. Chemistry of Materials 2009, 22 (3), 949-956.
    234. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J., Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
    235. Vezzu, K.; Garcia-Gonzalez, E.; Pagot, G.; Urones-Garrote, E.; Sotomayor, M. E.; Varez, A.; Di Noto, V., Effect of Relaxations on the Conductivity of La1/2+1/2xLi1/2-1/2x Ti1-xAlxO3 Fast Ion Conductors. Chem Mater 2022, 34 (12), 5484-5499.
    236. Amin, R.; Belharouk, I., Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode. Journal of Power Sources 2017, 348, 311-317.
    237. Wagemaker, M.; Simon, D. R.; Kelder, E. M.; Schoonman, J.; Ringpfeil, C.; Haake, U.; Lützenkirchen-Hecht, D.; Frahm, R.; Mulder, F. M., A Kinetic Two-Phase and Equilibrium Solid Solution in Spinel Li4+xTi5O12. Advanced Materials 2006, 18 (23), 3169-3173.
    238. Song, H.; Yun, S.-W.; Chun, H.-H.; Kim, M.-G.; Chung, K. Y.; Kim, H. S.; Cho, B.-W.; Kim, Y.-T., Anomalous decrease in structural disorder due to charge redistribution in Cr-doped Li4Ti5O12 negative-electrode materials for high-rate Li-ion batteries. Energy & Environmental Science 2012, 5 (12), 9903.
    239. Temeche, E.; Indris, S.; Laine, R. M., LiAlO2/LiAl5O8 Membranes Derived from Flame-Synthesized Nanopowders as a Potential Electrolyte and Coating Material for All-Solid-State Batteries. ACS applied materials & interfaces 2020, 12 (41), 46119-46131.

    無法下載圖示 校內:2028-08-01公開
    校外:2028-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE