簡易檢索 / 詳目顯示

研究生: 顏申坤
Yen, Shen-Kun
論文名稱: 涵括擴增升降壓範圍及強化電壓變動承受能力考量之固態變壓器設計與研製
Design and Development of Solid-State Transformers Considering Extended Voltage Conversion Range and Enhanced Voltage Variation Tolerance
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 82
中文關鍵詞: 寬輸入電壓適應性諧振轉換器固態變壓器
外文關鍵詞: input voltage adaptability, resonant converter, solid-state transformer
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在設計與研製一套具備擴增升降壓範圍與優異電壓變動承受能力之固態變壓器系統,以提升多元應用場景下的適應性。本系統架構採用升降壓轉換器作為前級,透過調變工作週期實現輸入電壓在寬範圍內之動態調節,確保輸出穩定,且為提升功率密度並減少體積,系統中選用薄膜電容取代電解電容,以有效減少系統體積,同時本系統電路的中間級採用LLC諧振轉換器作為隔離電路,透過參數設計以實現負載獨立的定電壓輸出,然後在控制方面則透過回授控制進行調整功率開關時序,以實現穩壓功能。本文並且建構原型電路,以及進行不同輸入電壓與負載條件之測試,實驗波形驗證即使輸入電壓出現顯著變化情形時,本設計電路輸出端均能保持穩定,驗證本系統於擴增升降壓範圍時,具備優異的電壓調適能力,研究成果對於需具彈性調節需求之固態變壓器設計,具有參考價值。

    This study aims to design and develop a solid-state transformer system considering an expanded voltage conversion range and enhanced voltage fluctuation tolerance, enhancing adaptability across diverse application scenarios. The system architecture adopts a buck-boost converter as the front-end stage, enabling dynamic input voltage regulation over a wide range through duty cycle modulation to ensure stable output. To improve power density and reduce system size, thin-film capacitors are used in place of electrolytic capacitors. Furthermore, the system incorporates an LLC resonant converter in the intermediate stage as the isolation circuit, which is designed to achieve load-independent constant voltage output through appropriate parameter selection. In terms of control, feedback regulation is also used to adjust the timing of the power switches, thereby achieving voltage stabilization. A prototype circuit is constructed, and tests are conducted under various input voltage and load conditions. Experimental waveforms confirm that the circuit output remains stable even under significant input voltage variations, validating the voltage adaptation capability across an extended buck-boost range. The results of this study provide valuable reference for the design of solid-state transformers requiring flexible voltage regulation.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 符號說明 XII 第一章 緒論 1 1-1 研究背景與文獻探討 1 1-2 研究目的及方法 3 1-3 內容大綱 4 第二章 固態變壓器系統之架構分析 5 2-1 簡介 5 2-2 升降壓轉換器分析 6 2-3 諧振轉換器分析 9 2-3-1 LLC 諧振轉換器之電壓增益 10 2-3-2 LLC 諧振轉換器之阻抗分析 13 2-4 換流器與濾波電路分析 15 2-5 系統動作時序分析 17 第三章 系統硬體設計與規劃 22 3-1 簡介 22 3-2 升降壓轉換器之硬體電路設計 24 3-3 LLC 諧振轉換器之設計與分析 26 3-3-1 LLC 諧振電路之參數設計 26 3-3-2 變壓器設計 29 3-4 整流器、換流器及濾波器設計 34 3-5 控制系統架構與方法分析 34 3-6 控制策略設計 36 第四章 系統測試結果 38 4-1 簡介 38 4-2 升降壓轉換器輸出測試 39 4-3 諧振電路特性測試 41 4-3-1 諧振電路輸入阻抗特性測試 42 4-3-2 諧振電路輸出電壓測試 44 4-3-3 功率開關零電壓切換測試 45 4-4 直流鏈電壓穩定性測試 47 4-5 輸入電壓調節能力與負載適應性測試 48 4-5-1 輸入電壓變動測試 49 4-5-2 負載變動時之輸出電壓測試 50 4-6 系統效率量測 52 第五章 結論與未來研究方向 55 5-1 結論 55 5-2 未來研究方向 56 參考文獻 57

    [1]J. E. Huber and J. W. Kolar, “Volume/Weight/Cost Comparison of a 1MVA 10 kV/400V Solid-State Against a Conventional Low-Frequency Distribution Transformer,” IEEE Energy Conversion Congress and Exposition, pp. 4545-4552, Pittsburgh, PA, USA, 2014.
    [2]B. Kroposki, “Integrating High Levels of Variable Renewable Energy into Electric Power Systems,” Journal of Modern Power Systems and Clean Energy, vol. 5, no. 6, pp. 831-837, Nov. 2017.
    [3]N. M. Haegel and S. R. Kurtz, “Global Progress Toward Renewable Electricity: Tracking the Role of Solar,” IEEE Journal of Photovoltaics, vol. 12, no. 6, pp. 1265-1272, Nov. 2022.
    [4]T. M. Parreiras, A. P. Machado, F. V. Amaral, G. C. Lobato, J. A. S. Brito and B. C. Filho, “Forward Dual-Active-Bridge Solid-State Transformer for a SiC-Based Cascaded Multilevel Converter Cell in Solar Applications,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6353-6363, Nov. 2018.
    [5]I. Syed and V. Khadkikar, “Replacing the Grid Interface Transformer in Wind Energy Conversion System With Solid-State Transformer,” IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2152-2160, May 2017.
    [6]H. Tu, H. Feng, S. Srdic and S. Lukic, “Extreme Fast Charging of Electric Vehicles: A Technology Overview,” IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 861-878, Dec. 2019.
    [7]D. Roger, E. Napieralska, K. Komeza and P. Napieralski, “Solid-State Transformers of Smart High-Power Battery Charger for Electric Vehicles,” IEEE Transactions on Industry Applications, vol. 59, no. 5, pp. 6532-6542, Sept. 2023.
    [8]L. Zheng, A. Marellapudi, V. R. Chowdhury, N. Bilakanti, R. P. Kandula, M. Saeedifard, S. Grijalva and D. Divan, “Solid-State Transformer and Hybrid Transformer With Integrated Energy Storage in Active Distribution Grids: Technical and Economic Comparison, Dispatch, and Control,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 4, pp. 3771-3787, Aug. 2022.
    [9]X. She, X. Yu, F. Wang and A. Q. Huang, “Design and Demonstration of a 3.6-kV–120-V/10-kVA Solid-State Transformer for Smart Grid Application,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 3982-3996, Aug. 2014.
    [10]J. E. Huber and J. W. Kolar, “Applicability of Solid-State Transformers in Today’s and Future Distribution Grids,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 317-326, Jan. 2019.
    [11]H. Wang, M. Chen, G. Li, M. Zheng and C. Hu, “An Optimized Fault-Tolerant Control Strategy Based on Dynamic Modulation Voltage Adjustment for Solid-State Transformers,” IEEE Transactions on Power Electronics, vol. 40, no. 7, pp. 9811-9823, Jul. 2025.
    [12]Q. Ye, R. Mo and H. Li, “Impedance Modeling and DC Bus Voltage Stability Assessment of a Solid-State-Transformer-Enabled Hybrid AC–DC Grid Considering Bidirectional Power Flow,” IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6531-6540, Aug. 2020.
    [13]C. Lu, W. Hu, H. Wu and F. C. Lee, “Quasi-Two-Level Bridgeless PFC Rectifier for Cascaded Unidirectional Solid State Transformer,” IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 12033-12044, Oct. 2021.
    [14]N. B. Y. Gorla, S. Kolluri, M. Chai and S. K. Panda, “A Comprehensive Harmonic Analysis and Control Strategy for Improved Input Power Quality in a Cascaded Modular Solid State Transformer,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6219-6232, Jul. 2019.
    [15]H. Wang, W. Guo, B. Xie and R. Li, “Insulation Improvement Scheme of Multi-Output Solid-State-Transformer for Photovoltaic Grid-Connected Circuit,” Annual Meeting of CSEE Study Committee of HVDC and Power Electronics, pp. 357-361, Hybrid Conference, China, 2021.
    [16]S. A. Saleh, E. Ozkop, B. Alsayid, C. Richard, X. F. S. Onge, K. M. McDonald and L. Chang, “ Solid-State Transformers for Distribution Systems–Part II:Deployment Challenges,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 5708-5716, Nov.-Dec. 2019.
    [17]S. A. Saleh, C. Richard, X. F. S. Onge, K. M. McDonald, E. Ozkop, B. Alsayid and L. Chang, “ Solid-State Transformers for Distribution Systems–Part I: Technology and Construction,” IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 4524-4535, Sept.-Oct. 2019.
    [18]L. Zheng, R. P. Kandula and D. Divan, “Current-Source Solid-State DC Transformer Integrating LVDC Microgrid, Energy Storage, and Renewable Energy Into MVDC Grid,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 1044-1058, Jan. 2022.
    [19]F. Li, J. Zhu, L. Yu, S. Bu, H. Zhao, J. Zhao, Y. Xu, J. M. Guerrero and C. Wang, “An Imbalance-Status-Enabled Autonomous Global Power-Sharing Scheme for Solid-State Transformer Interconnected Hybrid AC/DC Microgrids,” IEEE Transactions on Smart Grid, vol. 14, no. 3, pp. 1750-1762, May 2023.
    [20]M. Su, J. Huang, H. Wang, L. Jiang and X. Chen, “Direct AC–AC Solid-State Transformer Based on Hybrid DAB,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 12, no. 2, pp. 1385-1394, Apr. 2024.
    [21]L. Zheng, R. P. Kandula and D. Divan, “Soft-Switching Solid-State Transformer With Reduced Conduction Loss,” IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5236-5249, May 2021.
    [22]T. Liu, X. Yang, W. Chen, Y. Li, Y. Xuan, L. Huang and X. Hao, “Design and Implementation of High Efficiency Control Scheme of Dual Active Bridge Based 10 kV/1 MW Solid State Transformer for PV Application,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4223-4238, May 2019.
    [23]Q. Zhu, L. Wang, A. Q. Huang, K. Booth and L. Zhang, “7.2-kV Single-Stage Solid-State Transformer Based on the Current-Fed Series Resonant Converter and 15-kV SiC MOSFET,” IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1099-1112, Feb. 2019.
    [24]Z. Li, C. Zhao, Y. H. Hsieh, Q. Li and F. C. Lee, “Partial Fluctuation Power Control of Resonant Converter in Solid-State Transformer,” IEEE Transactions on Industrial Electronics, vol. 71, no. 10, pp. 12358-12367, Oct. 2024.
    [25]M. Andresen, K. Ma, G. De Carne, G. Buticchi, F. Blaabjerg and M. Liserre, “Thermal Stress Analysis of Medium-Voltage Converters for Smart Transformers,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4753-4765, Jun. 2017.
    [26]L. Zheng, R. P. Kandula and D. Divan, “Soft-Switching Solid-State Transformer With Reduced Conduction Loss,” IEEE Transactions on Power Electronics, vol. 36, no. 5, pp. 5236-5249, May 2021.
    [27]J. E. Huber, J. Böhler, D. Rothmund and J. W. Kolar, “Analysis and Cell-Level Experimental Verification of a 25 kW all-SiC Isolated Front End 6.6 kV/400 V AC-DC Solid-State Transformer,” CPSS Transactions on Power Electronics and Applications, vol. 2, no. 2, pp. 140-148, 2017.
    [28]M. A. Hannan, P. J. Ker, M. S. H. Lipu, Z. H. Choi, M. S. A. Rahman, K. M. Muttaqi and F. Blaabjerg, “State of the Art of Solid-State Transformers: Advanced Topologies, Implementation Issues, Recent Progress and Improvements,” IEEE Access, vol. 8, pp. 19113-19132, 2020.
    [29]P. Ning, T. Yuan, Y. Kang, C. Han and L. Li, “Review of Si IGBT and SiC MOSFET Based on Hybrid Switch,” Chinese Journal of Electrical Engineering, vol. 5, no. 3, pp. 20-29, Sept. 2019.
    [30]X. Liang, C. Zhang, S. Srdic and S. M. Lukic, "Predictive Control of a Series-Interleaved Multicell Three-Level Boost Power-Factor-Correction Converter," in IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8948-8960, Oct. 2018.
    [31]M. Lee, J. W. Kim, J. M. Choe and J. S. Lai, “Design of Repetitive Controller and Input Filter for Active Front-End Rectifier in Solid-State Transformer Under Finite Harmonics and Source Impedance,” Asian Conference on Energy, Power and Transportation Electrification, pp. 1-7, Singapore, 2018.
    [32]X. Zhao, Y. Lei, H. Wang, X. Quan and A. Q. Huang, “Design of A Medium Voltage Solid-State Transformer based on Modular AC-AC Resonant Converter and an Input-Series-Output-Parallel Architecture,” IEEE Energy Conversion Congress and Exposition, pp. 5791-5797, Baltimore, MD, USA, 2019.
    [33]V. Burugula, S. Sharma, S. Dhiman, O. Aljumah and S. Bhattacharya, “Control of Parallel Connected Dual Active Bridge Converters under Unbalanced Input Voltages in an MV Compliant Solid State Transformer,” IEEE Transportation Electrification Conference and Expo, pp. 1-6, Chicago, IL, USA, 2024.
    [34]P. Apte, S. Lin, L. Fräger and J. Friebe, “Design Considerations for a 50 kW Dual Bridge Series Resonant DC/DC Converter with Wide-Input Voltage Range for Solid-State Transformers,” IEEE Energy Conversion Congress and Exposition, pp. 1164-1170, Vancouver, BC, Canada, 2021.
    [35]S. Miao, F. Wang and X. Ma, “A New Transformerless Buck–Boost Converter With Positive Output Voltage,” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2965-2975, May 2016.
    [36]A. K. Rathore and V. R. Vakacharla, “A Simple Technique for Fundamental Harmonic Approximation Analysis in Parallel and Series–Parallel Resonant Converters,” IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9963-9968, Nov. 2020.
    [37]CS400125 Datasheet, Chang Sung Corporation.
    [38]E. L. Barrios, A. Ursúa, L. Marroyo and P. Sanchis, “Analytical Design Methodology for Litz-Wired High-Frequency Power Transformers,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2103-2113, Apr. 2015.
    [39]H. -C. Park, J. -U. Yang, J. -S. Jang and R. -Y. Kim, “Transformer Design Technique Based on the Magnetic Equivalent Model of High-Frequency Isolated LLC Converter With High Accuracy and Reduced Design Time,” IEEE Access, vol. 12, pp. 3948-3959, 2024.
    [40]Ferroxcube 3C90 Datasheet, Frroxcube Core, 2008.
    [41]F. Forest, E. Laboure, T. Meynard, and M. Arab, “Analytic Design Method Based on Homothetic Shape of Magnetic Cores for High-Frequency Transformers,” IEEE Transactions on Power Electronics, Vol. 22, No. 5, pp. 2070-2080, Sept. 2007.
    [42]ETD49 Cores and Accessories Datasheet, Tokyo Denki Kagaku Corporation, 2022.
    [43]M. S. S. Nia, S. Saadatmand, M. Altimania, P. Shamsi and M. Ferdowsi, “Analysis of Skin Effect in High Frequency Isolation Transformers,” North American Power Symposium, pp. 1-6, Wichita, KS, USA, 2019.
    [44]“Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors,” ASTM International, 2014.
    [45]E. L. Barrios, A. Ursúa, L. Marroyo and P. Sanchis, “Analytical Design Methodology for Litz-Wired High-Frequency Power Transformers,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2103-2113, Apr. 2015.
    [46]MM8FU060K Datasheet, MacMi, 2015.
    [47]SCT4018KE Datasheet, ROHM Semiconductor, 2023.
    [48]TMS320F28379D Datasheet, Texas Instruments Incorporated, 2021.

    無法下載圖示 校內:2030-07-15公開
    校外:2030-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE