簡易檢索 / 詳目顯示

研究生: 蕭可欣
Hsiao, Ke-Hsin
論文名稱: 有機單異質接面太陽能電池之陽極氧化銀薄膜研製
Study of Silver Oxide Anode of Single Donor-Acceptor Heterojunction Organic Photovoltaic Cell
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 85
中文關鍵詞: 有機太陽能電池氧化銀
外文關鍵詞: organic photovoltaic cell, silver oxide, silver
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為使用一透明陽極氧化銀薄膜取代一般所使用之陽極材料-銦錫氧化物(ITO)於單異質接面有機太陽電池上,其陽極為利用不同氧化方式於銀表面產生氧化銀薄膜,並進而製作成元件來探討氧化銀薄膜對於元件特性的影響。
    首先我們嘗試最佳化單異質接面有機太陽電池結構,其結構為ITO/CuPc (X nm)/C60 (Y nm)/BCP (10 nm)/Al (100 nm)。我們先調變CuPc 的膜厚到達最高效率;之後再改變C60 的膜厚在以達到最佳結構的最高效率,此元件的開路電壓為0.4 伏特,短路電流密度為4.34 mA/cm2,填充因素為60.1%,功率轉換效率為1.05%。
    接著我們選擇了具有低電阻率(6.45×10-8 Ω-cm)及氧化後之功函數可提升(4.79 eV)使改善陽極附近的電洞傳輸能力之銀金屬薄膜為陽極材料,而銀薄膜厚度在15 nm 時之特性最佳,包括具有較高的透光性(70.1%)及較低的片電阻(4.23Ω/square)。因此,加入最佳化銀陽極薄膜及主動層厚度之元件結構為glass/Ag (15nm)/CuPc (30 nm)/C60 (40 nm)/BCP (10 nm)/Al (100 nm)。
    接著我們嘗試六種不同氧化方式來進行銀薄膜表面氧化處理,包含:1.在加熱平台上氧化;2.紫外光臭氧處理;3.浸泡雙氧水溶液;4.PECVD中通入氧氣加熱;5.PECVD中之氧電漿處理;6.臭氧水溶液處理等六種氧化處理。上述六種氧化處理方式中,以浸泡臭氧水溶液六秒所製成的氧化銀薄膜在製作成太陽電池元件後,在AM1.5的量測範圍下,擁有最高的功率轉換效率0.99%,相較於利用傳統銦錫氧化物(ITO)作為陽極的元件之效率1.05%是非常接近的,所以有機太陽能電池利用氧化銀薄膜為元件的陽極是有希望能夠取代傳統的ITO為陽極的材料之一。
    最後我們在陽極氧化銀薄膜與CuPc 間插入一具有最佳厚度的金薄膜
    (0.5nm),其最主要的目的為利用金的功函數來提升電洞傳輸能力,而在氧化銀薄膜上鍍ㄧ極薄的金可降低氧化銀表面的粗糙度以改善陽極氧化銀與CuPc 之表面接觸特性。同時也在六種具有最佳氧化處理條件之氧化銀薄膜上加入最佳厚度的金薄膜製作成元件,其中又以在PECVD 通入1W 氧電漿15 秒,及在PECVD 中通氧氣加熱125℃15 秒,及以臭氧水處理6 秒的氧化銀薄膜所製作成的元件具有
    較高功率轉換效率1.08%、1.09%以及1.2%。因此,以氧化銀及一極薄之金薄膜為有機太陽電池之陽極具有極大能取代ITO 為陽極的能力。

    In this thesis, we demonstrate a single donor-acceptor heterojunction organic photovoltaic (OPV) cell using a transparent Ag/silver oxide anode, which can replace
    indium tin oxide (ITO).
    At first, we try to optimize the best structure in OPV cells whose layer in order as ITO glass/CuPc (X nm)/C60 (Y nm)/BCP (10 nm)/Al (100 nm), and then modulate the
    thickness of CuPc (electron donor layer) X and C60 (electron acceptor layer) Y to get the highest power conversion efficiency of this structure, which are 0.4 V of
    open-circuit voltage (VOC), 4.34 mA/cm2 of short-circuit current density (JSC), 60.1% of fill factor (FF), and 1.05% of power conversion efficiency (PCE).
    Secondly, we choose Ag as anode owing to its low resistivity as 6.45×10-8 Ω-cm and the higher work function on oxidized Ag from 4.6 eV to 4.79 eV formed the better
    hole transportation between anode and CuPc, which higher than that of ITO, 4.73 eV. Then, we optimize the thickness of Ag as 15 nm with the better properties of higher
    transmittance, 70.1%, and lower sheet resistance, 4.23 Ω/square, to fabricate devices with the optimal thickness of active layers, whose structure in order as glass/Ag (15
    nm)/CuPc (30 nm)/C60 (40 nm)/BCP (10 nm)/Al (100 nm).
    Thirdly, we oxidize the surface of Ag with six kinds oxidized treatments, including heating on hot plate, UV-ozone method, immersing in a hydrogen peroxide
    solution, heating under oxygen atmosphere in PECVD, oxygen plasma treatment in PECVD, and ozone water treatment. The best performance of the best treatment on Ag
    anode in OPV cell is under ozone water treatment for 6 seconds, whose power conversion efficiency is approximate 0.99% at simulated AM 1.5 illumination closed
    to the 1.05% ITO-based OPV cell. OPV cells using such surface-modified silver anode shows better performance competed with conventional ITO-based devices.
    Finally, the optimal thickness of Au as 0.5nm is inserted between CuPc and silver oxide anode formed by the best treatments of oxygen plasma treatment in PECVD,
    125℃ heating in PECVD, and ozone water treatment to fabricate the devices with the best performances of 1.08%, 1.09% and 1.2%, respectively. Thus, the Ag/silver
    oxide/Au show very high potential to be used as anode in our OPV cells to replace ITO.

    Abstract (Chinese) Abstract (English) Acknowledgement Table Captions Figure Captions Chapter 1 Introduction 1 1-1 History of Organic Photovoltaic Cell 1 1-2 Thesis Motivation and Organization 4 Chapter 2 Organic Photovoltaic Cell 8 2-1 Solar spectrum 8 2-2 Work mechanism of Inorganic Photovoltaic Cell 9 2-3 Analysis of inorganic Photovoltaic Cell Characteristics 10 2-3-1 Open-circuit voltage (VOC) 10 2-3-2 Short-circuit current (ISC) 10 2-3-3 Power conversion efficiency (PCE) 11 2-3-4 Fill Factor (FF) 12 2-4 Work mechanism of Organic Photovoltaic Cell 12 2-5 Analysis of organic photovoltaic cell characteristics 14 2-5-1 Dark current characteristics 14 2-5-2 Open-circuit voltage (VOC) 15 2-5-3 Short-circuit current (JSC) 15 2-5-4 Power conversion efficiency (PCE) 16 2-5-5 Fill factor (FF) 17 2-6 Measurements of photovoltaic cells 17 2-6-1 Power conversion efficiency (PCE) 17 2-6-2 Absorbance and transmittance spectrum 17 2-6-3 Atomic Force Microscope (AFM) 18 2-6-4 Four point probe 19 2-6-5 Ultraviolet Photoelectron Spectroscopy (UPS) 19 2-6-6 Electron Spectroscopy for Chemical Analysis (ESCA) 20 2-7 Materials used in the experiment 20 2-7-1 Anode and cathode 20 2-7-2 Organic layer 21 Chapter 3 Fabrication of Organic photovoltaic cell 22 3-1 Pre-clean glass Substrate 22 3-2 Deposition of Ag anode 23 3-3 Oxidation of Ag anode 23 3-4 ITO Pattern Fabrication 25 3-5 Deposition of Organic Thin Films and Al Cathode 26 Chapter 4 Experimental results and discussions 27 4-1 Device Structure 27 4-2 Modulate thickness of active layers 28 4-2-1 Modulate thickness of C60 (X nm) 28 4-2-2 Modulate thickness of CuPc (Y nm) 29 4-3 Modulate thickness of Ag anode 30 4-4 Formation of silver oxide as anode 33 4-4-1 Heating on hot plate in air 33 4-4-2 UV-ozone treatment 35 4-4-3 Immersing in a hydrogen peroxide solution 37 4-4-4 Heating under oxygen atmosphere in PECVD 40 4-4-5 Oxygen plasma treatment in PECVD 41 4-4-6 Ozone water treatment 44 4-5 Modulate thickness of Au in Ag-based device 46 4-6 Ultra-thin Au layer on silver oxide as anode in device 48 Chapter 5 Conclusion 51 Reference 52

    [1] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. Vol. 48, p.83 (1986).
    [2] P. Peumans, V. Bulovi and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes,” Appl. Phys. Lett., Vol. 76, p. 2650 (2000).
    [3] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., Vol. 79, p. 126 (2001).
    [4] J. Xue, S. Uchida, B. P. Rand and S.R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett., Vol. 84, p. 3013 (2004).
    [5] J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixer molecular heterojunctions,” Appl. Phys. Lett., Vol. 85, p. 5757 (2005).
    [6] T. Osasa, Y. Matsui, T. Matsumura, and M. Matsumura, “Determination of photo-active region in organic thin film solar cells with an organic heterojunction,” Sol. Energy Mater. Sol. Cells, Vol. 90, p. 3136 (2006).
    [7] P. Sullivan, S. Heutz, S. M. Schultes, and T.S. Jones, “Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices,” Appl. Phys. Lett., Vol. 84, p. 1210 (2004).
    [8] G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells,” Appl. Phys. Lett., Vol. 89, p. 073502 (2006).
    [9] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions,” Appl. Phys. Lett., Vol. 85, p. 5757 (2004).
    [10] I. A. Levitsky, W. B. Euler, N. Tokranova, B. Xu, and J. Castracane, “Hybrid solar cells based on porous Si and copper phthalocyanine derivatives,” Appl. Phys. Lett., Vol. 85, p. 6245 (2004).
    [11] A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, “Postfabricaiton annealing of pentacene-based photovoltaic cells,” Appl. Phys. Lett., Vol. 85, p. 6272 (2004).
    [12] T. Osasa, S. Yamamoto, and M. Matsumura, “Formation of a Bulk-Heterojunction Structure in Organic Solar Cells by Annealing Stacked Amorphous and Microcrystalline Layers,” Adv. Funct. Mater., Vol. 17, p. 2937 (2007).
    [13] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., Vol. 79, p. 126
    (2001).
    [14] I. Yoo, M. Lee, C. Lee, D. W. Kim, I. S. Moon, and D. H. Hwang, “The effect of a buffer layer on the photovoltaic properties of solar cells with P3OT:fullerene
    composites,” Synt. Meta., Vol. 153, p. 97 (2005).
    [15] V. Shrotriya, E. H. E. Wu, G. Li, Y. Yao, and Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells,” Appl. Phys. Lett., Vol. 88, p. 064104 (2006).
    [16] K. Hong, and J. L. Lee, “Inverted Top-Emitting Organic Light-Emitting Diodes Using Transparent Silver Oxide Anode Formed by Oxygen Plasma,” Elect. Soli.
    Stat. Lett., Vol. 11, p. H29 (2008).
    [17] G. I. N. Waterhouse, G. A. Bowmaker, and J. B. Metson, “Oxidation of a polycrystalline silver foil by reaction with ozone,” Appl. Surf. Scie., Vol. 183, p.
    191 (2001).
    [18] B. Kouskoussa, M. Morsli, K. Benchouk, G. Louarn, L. Cattin, A. Khelil, and J. C. Bernede, “On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer” Phys. Status Solidi A, Vol. 206, p. 311 (2009).
    [19] J. C. Bernede, Y. Berredjem, L. Cattin, and M. Morsli, “Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic
    layer,” Appl. Phys. Lett. , Vol. 92, p. 083304 (2008).
    [20] U. K. Barik, S. Srinivasan, C.L. Nagendra, and A. Subrahmanyam, “Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films:
    role of oxygen,” Thin Solid Films, Vol. 429, p. 129 (2003).
    [21] C. W. Chen, P. Y. Hsieh, H. H. Chiang, C. L. Lin, H. M. Wu, and C. C. Wu, “Top-emitting organic light-emitting devices using surface-modified Ag anode,” Appl. Phys. Lett., Vol. 83, p. 5127 (2003).
    [22] D .I. K. Petritsch, “Organic Solar Cell Architectures,” PhD Thesis, (2000).
    [23] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett., Vol. 84, p. 3013
    (2004).
    [24] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction
    solar cells,” J. Appl. Phys., Vol. 94, p. 6849 (2003).
    [25] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, J. C. Hummelen, “Origin of the Open Circuit Voltage of
    Plastic Solar Cells,” Adv. Fun. Mater., Vol. 11, p. 374 (2001).
    [26] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, “Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer,”Appl. Phys. Lett., Vol. 84, p. 4218 (2004).
    [27] P. Peumans and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells,” Appl. Phys. Lett., Vol. 79, p. 126
    (2001).
    [28] I. C. Chen, “Improved Efficiency of p-n Junction Organic Photovoltaic Cell,”(2008).

    下載圖示 校內:2014-06-25公開
    校外:2014-06-25公開
    QR CODE