簡易檢索 / 詳目顯示

研究生: 林佳賢
Lin, Jia-Shian
論文名稱: 輔以水滴流動概念協助電力系統規劃運轉之研究
Water Drop Concept-Aided Planning and Operation of Electric Power Transmissions
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 電力系統規劃運轉水滴演算法
外文關鍵詞: planning and operation, intelligent water drops algorithms
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文輔以水滴流動群聚智能之概念於電力系統可調裝置之規劃控制,此方法乃模擬自然界水滴聚流尋找最佳路徑,並經由流動過程中之速度變數與路徑阻礙之影響關係,進而推導水滴尋優捷徑之模式建立,並將其應用至電力系統運轉之最佳規劃控制。此外為使尋優邁向最佳解之機率增加,本文並嵌入環境變化因子於演算模型,進而提出改良型水滴演算法之應用,期能更加優質提高電力系統運轉效能。而為驗證該方法之規劃協調可行性,本文已將其測試於電力系統可控設備之規劃協調,並與部分方法相較,測試結果顯示本文所提方法不僅提昇水滴演算法之尋優能力,亦兼顧減少輸電線路損失及電壓偏移量之目標,期有助於電力規劃應用參考之需。

    This thesis proposes to apply the concept of water drop to assist in the planning and control of adjustable devices in a power system. The method mimics the nature of water drop flowing towards the optimal path by considering the speed variables as well as the path impediment, hence forming an optimization scheme that is applicable to power system planning and control. In order to increase the probability of finding the optimal points, the method has further included the environmental variation factors for the paradigm modeling, anticipating improving the optimization performance in a more significant manner. This method has been simulated through several systems with comparisons to other methods. Test results indicate that the proposed approach not only enhances the capability of optimization, but also reaches the goal of the decrement of transmission losses and voltage deviations. The outcome gained from this thesis is expected to be beneficial for power system planning applications.

    中文摘要I 英文摘要II 誌謝III 目錄IV 表目錄VI 圖目錄VII 第一章緒論1 1-1研究背景與動機1 1-2文獻回顧與探討1 1-3研究目的與方法3 1-4各章內容大綱簡述5 第二章問題描述6 2-1前言6 2-2現行電力系統可調裝置簡介6 2-3系統協調策略規劃8 2-4最佳協調控制之規劃9 2-5本章結論13 第三章水滴演算法之建模及改良14 3-1前言14 3-2水滴演算法之建模理論14 3-2-1自然界水滴之特性15 3-2-2水滴演算法之建模16 3-3應用水滴演算法求解最佳化問題之流程20 3-4應用水滴演算法於電力系統協調控制之規劃23 3-5改良型水滴演算法之簡介27 3-5-1自然界環境變化與水滴演算法建模之關聯性27 3-5-2應用改良型水滴演算法於電力系統協調控制規劃之計算流29 3-6本章結論31 第四章模擬測試結果32 4-1前言32 4-2參數設定探討32 4-2-1小型電力系統描述32 4-2-2水滴數目(W)之分析34 4-2-3冲刷土壤係數(ρ)之分析36 4-2-4小型電力系統規劃結果38 4-3於IEEE 30-BUS之模擬測試39 4-3-1IEEE 30-BUS系統之簡介39 4-3-2應用水滴演算法於30-BUS系統之模擬結果42 4-3-3應用改良式水滴演算法於30-BUS系統之規劃結果46 4-4於IEEE 57-BUS之模擬測試53 4-4-1IEEE 57-BUS系統之簡介53 4-4-2測試結果及分析54 4-5本章結論61 第五章總結與未來研究方向62 5-1總結62 5-2未來研究方向63 參考文獻64 作者簡介69

    [1]F. Li, H. Sun, H. Wan, J. Wang, Y. Xia, Z. Xu and P. Zhang, “Smart transmission grid: vision and framework,” IEEE Transactions on Smart Grid, Vol. 1, No. 2, pp. 168-177, August 2010.
    [2]G. K. Venayagamoorthy and R. G. Harley, “Swarm intelligence for transmission system control,” IEEE Power Enginerring Society, General Meeting, Tampa, FL, pp. 1-4, June 2007.
    [3]A. Khorsandi, A. Alimardani, B. Vahidi and S. H. Hosseinian, “Hybrid shuffled frog leaping algorithm and nelder-mead simplex search for optimal reactive power dispatch,” IET Proceedings: Generation, Transmission and Distribution, Vol. 5, No. 2, pp. 249-256, February 2011.
    [4]A. A. Abou El-Ela and M. A. Abido, “Optimal operation strategy for reactive power control modeling,” Modeling, Simulation, and Control, A, AMSE Press, Vol. 41, No. 3, pp. 19-40, 1992.
    [5]R. Motapalomino and V. H. Quintana, “Sparse reactive power scheduling by a penalty-function linear programming technique,” IEEE Transactions on Power Systems, Vol. 1, No. 3, pp. 31-39, August 1986.
    [6]S. S. Sachdeva and R. Billinto, “Optimal network var planning by nonlinear-programming,” IEEE Transactions on Power Appartus and Systems, Vol. PA92, No. 4, pp. 1217-1225, 1973.
    [7]V. H. Quintana and M. Santosnieto, “Reactive power dispatch by successive quadratic programming,” IEEE Transactions on Energy Conversion, Vol. 4, No. 3, pp. 425-435, September 1989.
    [8]Q. H. Wu, Y, J. Cao and J. Y, Wen, “Optimal reactive power dispatch using an adaptive genetic algorithm,” International Journal of Electrical Power and Energy Systems, Vol. 20, No. 8, pp. 563-569, November 1988.
    [9]F. Li, J. D. Pilgrim, C. Dabeedin, A. Chebbo and R. K. Aggarwal, “Genetic algorithms for optimal reactive power compensation on the national grid system,” IEEE Transactions on Power Systems, pp. 493-500, February 2005.
    [10]D. Devaraj and B. Yegnanarayana, “Genetic-algorithm-based optimal power flow for security enhancement,” IET Proceedings: Generation, Transmission and Distribution, Vol. 152, No. 6, pp. 899-905, November 2005.
    [11]L. L. Lai and J. T. Ma, “Application of evolutionary programming to reactive power planning comparison with nonlinear programming approach,” IEEE Transactions on Power Systems, Vol. 12, No. 1, pp. 198-206, February 1997.
    [12]Q. H. Wu and J. T. Ma, “Power system optimal reactive power dispatch using evolutionary porgramming,” IEEE Transactions on Power Systems, Vol. 10, No. 3, pp. 1243-1249, August 1995.
    [13]P. Gardel, B. Baran, H. Estigarribia, U. Fernandez and S. Duarte, “Multiobjective reactive power compensation with an ant colony optimization algorithm,” IEE International Conference on AC and DC Power Transmission, London, UK, No. 28-31, pp. 276-280, March 2006.
    [14]T. Niknam, “A new approach based on ant colony optimization for daily volt/var control in distribution networks considering distributed generators,” Energy Conversion and Management, Vol. 49, No. 12, pp. 3417-3424, December 2008.
    [15]M. Hiroyuki and K. Yubun, “Power network decomposition with new ant colony optimization,” International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, No. 11-15, pp. 1-6, June 2006.
    [16]J. G. Vlachogiannis, N. D. Hatziargyriou and K. Y. Lee, “Ant colony system-based algorithm for constrained load flow problem,” IEEE Transactions on Power Systems, Vol. 20, No. 3, pp. 1241-1249, August 2005.
    [17]K. Y. Lee and J. G. Vlachogiannis, “Ant colony system-based algorithm for constrained load flow problem,” International Conference on Intelligent Systems Application to Power Systems, University Park, PA, No. 6-10, pp. 22-35, November 2005.
    [18]T. Sum-im, “Economic dispatch by ant colony search algorithm,” IEEE Conference on Cybernetics and Intelligent Systems, Singapore, No. 1-3, pp. 416-421, December 2004.
    [19]Y. D. Valle, J. G. Vlachogiannis, S. Mohagheghi, J. C. Hernandez and R. G. Harley, “Particle swarm optimization: basic concepts, variants and applications in power systems,” IEEE Transactions on Evolutionary Computation, Vol. 12, No. 2, pp. 171-195, April 2008.
    [20]H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama and Nakanishi, “A particle swarm optimization for reactive power voltage control considering voltage security assessment,” IEEE Transactions on Power Systems, Vol. 15, No. 4, pp. 1232-1239, November 2001.
    [21]H. Sharifzadeh and M. Jazaeri, “Optimal reactive power dispatch based on particle swarm optimization considering FACTS devices,” International Conference on Sustainable Power Generation and Supply, pp. 1-7, April 2009.
    [22]B. Zhao, C. X. Guo and Y. J. Cao, “A multiagent-based particle swarm optimization approach for optimal reactive power dispatch,” IEEE Transactions on Power Systems, Vol. 20, No. 2, pp. 1070-1078, May 2005.
    [23]J. G. Vlachogiannis and K. Y. Lee, “A comparative study on particle swarm optimization for optimal steady-state performance of power systems,” IEEE Transactions on Power Systems, Vol. 21, No. 4, pp. 1718-1728, November 2006.
    [24]P. Subbaraj and P. N. Rajnarayanan, “Hybrid particle swarm optimization based optimal reactive power dispatch,” International Journal of Computer Applications, Vol. 1, No. 5, pp. 65-70, January 2010.
    [25]M. R. Alrashidi and M. E. El-Hawary, “Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects,” IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 2030-2038, November 2007.
    [26]S. H. Hamed, “Intelligent water drops algorithm : A new optimization method for solving the multiple knapsack problem,” International Journal of Intelligent Computing and Cybernetics , Vol. 1, No. 2, pp. 193-212, March 2008.
    [27]S. H. Hamed, “The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm,” International Journal of Bio-Inspired Computatuion , Vol. 1, No. 1/2, pp. 71-79, January 2009.
    [28]S. R. Rayapudi, “An intelligent water drop algorithm for solving economic load dispatch problem,” International Journal of Electrical and Electronics Engineering , Vol. 5, No. 1, pp. 43-50, 2011.
    [29]C. L. Wadhwa, “Electrical power systems,” Wiley Eastern Limited, pp. 222-245, March 1991.
    [30]K. R. C. Mamandur and R. D. Chenoweth, “Optimal control of reactive power flow for improvements in voltage profiles and for real power loss minimization,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, No. 7, pp. 3185-3194, July 1981.
    [31]C. Dai, W. Chen, Y. Zhu and X. Zhang, “Seeker optimization algorithm for optimal reactive power dispatch,” IEEE Transactions on Power Systems, Vol. 24, No. 3, pp. 1218-1231, August 2009.

    下載圖示 校內:2021-06-16公開
    校外:2021-06-16公開
    QR CODE