簡易檢索 / 詳目顯示

研究生: 吳宗祐
Wu, Tsung-Yu
論文名稱: 類向量控制應用於電動輔助自行車
Psuedo-Vector Control for Electric Assisted Bicycle
指導教授: 蔡明祺
Tsai, Mi-Ching
共同指導教授: 謝聰烈
Hsien, Tsung-Lieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 56
中文關鍵詞: 電動輔助自行車向量控制永磁無刷馬達
外文關鍵詞: Electric-assisted bicycle, Vector Control, PMSM
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 常見的電動輔助自行車因成本考量而選擇霍爾感測器作為馬達位置迴授,並使用六步方波控制為驅動方式,造成驅動上容易產生較大的扭矩漣波及異音等問題。為了改善六步控制驅動,本文利用類向量控制架構,提出角度補償方式,搭配微控制器演算法,有效提升霍爾感測器迴授的精度,改善自行驅動時的頓挫感,本研究主要著重於六步方波效率比較及角度迴授精度提升對於類向量控制的影響。論文首先說明傳統六步方波控制所造成的現象及問題,針對問題進行分析後,並透過類向量控制之方法解決。利用實驗結果,驗證類向量控制應用於電動輔助自行車的通用性,以及實測迴授角度的精度改善所帶來的影響。實測結果顯示,操作於特定功率區間下,類向量控制效率高於六步方波控制,其結果有助於優化電動輔助自行車的驅動騎乘性能。

    Electric-assisted bicycles commonly adopt Hall sensors to retrieve the position feedback of the motor due to the cost consideration, as well as the employment of six-step square-wave control as the driving method, which cause problems of torque ripples and noises. In order to improve the driving method, this paper proposed a Pusedo-Vector Control method to compensate the angle. Combined with a microcontroller algorithm, the accuracy of the Hall sensor’s feedback signal was effectively improved, and further the comfortability during self-driving was enhanced. The efficiency comparison of six-step square-wave control and the accuracy improvement of angle feedback would be the focuses of this research. Firstly, the problem caused by the traditional six-step square wave control would be explained and analyzed, and then the solution of the problems would be proposed via Pusedo-Vector control method. In Accordance with the experimental results, the versatility of Pusedo-Vector control applied to electric-assisted bicycles can be verified, and the impact of the accuracy improvement of the measured feedback angle would be demonstrated. The actual measurement results show that the efficiency of Pusedo-Vector control is better than six-step square-wave control when operating in a specific power range, which is beneficial to optimize the riding performance of the electric-assisted bicycle.

    中文摘要 II ABSTRACT III 誌謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XVIII 符號表 XXI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1 六步方波驅動架構 3 1.3.2 類向量控制架構 4 1.4 論文架構 8 第二章 永磁同步馬達電壓方程式與傳統控制法 11 2.1 永磁同步馬達數學模型 11 2.1.1 永磁馬達分類 11 2.1.2 三相永磁馬達之數學方程式 12 2.1.3 座標轉換 13 2.1.4 旋轉座標系下的馬達數學模型 15 2.2 空間向量脈寬調變 16 第三章 類向量控制架構分析 19 3.1 類向量控制架構分析 19 3.2 迴授角度資訊 20 3.2.1 角度補償 23 3.3 反電動勢量測 24 3.3.1反電動勢建表 25 3.4 控制命令 27 3.5 小結 29 第四章 系統控制流程及硬體電路設計 31 4.1 系統動作流程 31 4.1.1 啟動程式流程 31 4.1.2 角度補償程式流程 32 4.2 主電路設計 33 4.2.1 電路架構 34 4.2.2 功率開關規格選用 36 4.3 電源電路 36 4.3.1 36V至15V 36 4.3.2 12至5V 37 4.3.3 5V至3.3V 38 4.4 霍爾訊號上拉電路 39 4.5 小結 40 第五章 系統架構驗證與成果 41 5.1 測試環境 41 5.1.1 單晶片微控制器 41 5.1.2 扭矩感測器實體量測 42 5.2 控制架構動力計量測 44 5.2.1 類向量控制加載測試 44 5.2.2 整車測試 46 5.3 小結 50 第六章 結論及未來研究方向 52 6.1 結論 52 6.2 未來研究方向 53 參考文獻 54

    [1]SlideShare, “BLDC FOC 控制原理”, Available from: https://www.slideshare.net/roboard/bldc-foc
    [2]C. Ta, "Pseudo-Vector Control - An alternative approach for brushless DC motor drives," 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, 2011, pp. 1534-1539.
    [3]翁瑞陽, “提升電池壽命之車用超電容輔助儲能系統研製”, 國立成功大學電機工程學系碩士論文, 2019年
    [4]洪乙任, “基於低容值設計之馬達驅動系統電流諧波失真改善”, 國立成功大學電機工程學系碩士論文, 2019年
    [5]吳昇澤, “永磁同步馬達 d-q 軸電感量測原理推導與實測”, 馬達電子報, 成大馬達科技研究中心, 第781期, 2018年2月
    [6]許敏澤, “考量舒適性之電動機車動力馬達再生制動方法研製”, 國立成功大學電機工程學系碩士論文, 2018年
    [7]劉昌煥, “交流電機控制 ─ 向量控制與直接轉矩控制原理”, 第四版, 東華書局, 2016年
    [8]劉子瑜, “基於弦波電流驅動瑜永磁同步馬達電流迴路控制之研究”, 國立成功大學電機工程學系碩士論文, 2009年
    [9]陳俊霖、謝易儒, “淺談交流馬達d-q軸轉換”, 馬達電子報, 成大馬達科技研究中心, 第750期, 2018年2月
    [10]GIANT BICYCLE, “EXPLORE”, Available from: https://www.giantcyclingworld.com/bike.php?id=80a56068-b037-449d-8d05-2ee0f58f1cea
    [11]Infineon Technologies IRS2336, “HIGH VOLTAGE 3 PHASE GATE DRIVER IC”, Available from:https://www.infineon.com/dgdl/Infineon-IRS2336x-DataSheet-v02_00-EN.pdf?fileId=5546d46269e1c019016a4e52d2c70c54
    [12]Infineon Technologies IRFB4410ZPbF, “N-channel Powe MOSFET”, Available from: https://www.infineon.com/dgdl/irfb4410zpbf.pdf?fileId=5546d462533600a40153561644141e3a
    [13]Texas Instruments LM2576, “LM2576xx Series SIMPLE SWITCHER® 3-A Step-Down Voltage Regulator”, Available from: https://www.ti.com/lit/ds/symlink/lm2576.pdf?ts=1593577068844&ref_url=https%253A%252F%252Fwww.google.com%252F
    [14]Texas Instruments LM317, “LM317 3-Terminal Adjustable Regulator”, Available from: https://www.ti.com/lit/ds/symlink/lm317.pdf
    [15]STMicroelectronics LD1117, “Adjustable and fixed low drop positive voltage regulator”, Available from: https://www.st.com/resource/en/datasheet/ld1117.pdf
    [16]Renesas Electronics RX62T, “RX62T Group, RX62G Group”, Available from: https://www.renesas.com/us/en/doc/products/mpumcu/doc/rx_family/r01ds0096ej0200_rx62t62g.pdf
    [17]Methode Electronics torque sensor, “bottom bracket eBike torque sensor”, Available from: https://www.methode.com/
    [18]丁奕元, “基於霍爾感測器之改良型轉子角度估算法應用於內藏式永磁同步馬達之驅動控制”, 國立臺灣大學機械工程研究所碩士論文, 2011年
    [19]Z. M. Dalala,Y. H. Cho and J. S. Lai "Enhanced Vector Tracking Observer for Rotor Position Estimation for PMSM Drives with Low Resolution Hall-Effect Position Sensors," 2013 International Electric Machines & Drives Conference, Chicago, IL, 2013, pp. 484-491.
    [20]中華民國行政院交通部, “電動輔助自行車及電動自行車形式安全審驗管理辦法”, Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=K0040068
    [21]袁雷, 胡冰新, 魏克银, 陈姝, “現代永磁同步電機控制原理及MATLAB 仿真”, 第一版, 北京航空航天大學出版社, 2016 年
    [22]M. C. Harke, G. De Donato, F. G. Capponi, T. R. Tesch, and R. D.Lorenz, "Implementation Issues and Performance Evaluation ofSinusoidal, Surface-Mounted PM Machine Drives With Hall-EffectPosition Sensors and a Vector-Tracking Observer," IndustryApplications, IEEE Transactions on, vol. 44, pp. 161-173, 2008.
    [23]P. B. Beccue, S. D. Pekarek, B. J. Deken, and A. C. Koenig, "Compensation for Asymmetries and Misalignment in a Hall-Effect Position Observer Used in PMSM Torque-Ripple Control," IndustryApplications, IEEE Transactions on, vol. 43, pp. 560-570, 2007.
    [24]Y. Anno, S. Seung-Ki, L. Dong Cheol, and S. Cha, "Novel speed and rotor position estimation strategy using a dual observer for low resolution position sensors," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 647-653.
    [25]T. M. Jahns, "Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive," IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681-689, Jul./Aug. 1987.
    [26]S. R. Macminn and T. M. Jahns, "Control techniques for improved high-speed performance of interior PM synchronous motor drives," IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 997-1004, Sept./Aug. 1991.
    [27]M. N. Uddin and M. A. Rahman, "High-speed control of IPMSM drives using improved fuzzy logic algorithms," IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 190-199, Feb. 2007.
    [28]N. Matsui and M. Shigyo, "Brushless DC motor control without position and speed sensors," IEEE Transactions on Industry Applications, vol. 28, no. 1, pp. 120-127, Jan./Feb. 1992.
    [29]C. Chu, M. Tsai, and H. Chen, "Torque control of brushless DC motors applied to electric vehicles," in IEEE International Electric Machines and Drives Conference, Massachusetts, USA, 2001, pp. 82-87.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE