| 研究生: |
洪逸樺 Hung, Yi-Hua |
|---|---|
| 論文名稱: |
LiLa(MoO4)2:Sm3+橘紅色螢光粉之製備與共添加Dy3+/Tb3+形成光致發光可調色單相白光之研究 Single-phased white-light-emitting luminescence using color-tunable Dy3+/Tb3+ co-doped LiLa(MoO4)2:Sm3+ red-orange phosphors |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | LiLa(MoO4)2:Sm3+ 、LiLa(MoO4)2:Sm3+/Dy3+ 、LiLa(MoO4)2:Sm3+/Tb3+ 、橘紅色螢光粉 、單相白光 、可調色 、光致發光 、共添加 |
| 外文關鍵詞: | LiLa(MoO4)2:Sm3+, LiLa(MoO4)2:Sm3+/Dy3+, LiLa(MoO4)2:Sm3+/Tb3+, red-orange phosphor, single-phased, white-light-emitting, color-tunable, photoluminescence, co-doped |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以固態反應法製備LiLa(MoO4)2作為主體材料,主要使用Sm3+離子置換La3+位置作為發光中心之橘紅色螢光粉(LiLa(MoO4)2:Sm3+),且藉由共添加的方式使Dy3+離子以及Tb3+離子同時置換La3+位置,並依照不同濃度比例來達到調色的目的,並使主體材料能激發出單相的白色光源,其後續探討其粉體結構與光致發光性質等特性。
第一部分探討在不同的煆燒溫度下,LiLa(MoO4)2:Sm3+之光致發光特性及晶體結構的轉變,其結果顯示隨著溫度提升,放光強度也有提升的趨勢,並在600°C時有最高的放射強度,為斜方晶系,之後將溫度繼續提升放射強度反而下降,這是因為晶體結構上的改變導致放射強度的下降,800°C時晶體結構完整轉變並在質量上無明顯變化,為四方晶系。
第二部分探討不同Sm3+參雜濃度之影響,當Sm3+參雜濃度為9%時可以得到最強的發光強度,斜方晶系和四方晶系皆相同,並在SEM觀察出兩種晶體結構在影像上有極大的差異。LiLa0.91(MoO4)2:9%Sm3+在276 nm激發光源下,斜方晶系和四方晶系分別可得到由602 nm處主導的橘紅光和粉紫光,粉紫光是因為四方晶系之主體材料本身會發光混合所導致,且激發光譜涵蓋225 nm~500 nm,可有效地以短紫外光芯片和近紫外光芯片激發。
第三部分探討共添加不同濃度Sm3+與Dy3+於斜方晶系LiLa(MoO4)2之影響,Dy3+在激發光譜寬帶中278 nm處有最強的強度,和主要調色基底之活化劑Sm3+激發光源276 nm相近且價數相同,因而不會產生電荷補償問題而影響螢光強度,斜方晶之濃度比例LiLa0.91(MoO4)2:3%Sm3+/6%Dy3+螢光粉樣品,坐標(0.331, 0.313),相對色溫(CCT)為5568K,接近標準白色坐標(0.333, 0.333)。
第四部分探討共添加不同濃度Sm3+與Tb3+於四方晶系LiLa(MoO4)2之影響,Tb3+在激發光譜寬帶中277 nm處有最強的強度,和主要調色基底之活化劑Sm3+激發光源276 nm相近且價數相同,因而不會產生電荷補償問題而影響螢光強度,四方晶之濃度比例LiLa0.91(MoO4)2:8%Sm3+/1%Tb3+螢光粉樣品,坐標(0.339, 0.321),相對色溫(CCT)為5169K,接近標準白色坐標(0.333, 0.333),這些結果顯示LiLa(MoO4)2材料在螢光領域中的可調性極大,為良好的螢光主體材料粉體,在未來螢光粉領域中的應用上是能受到肯定的。
In this work, LiLa(MoO4)2:Sm3+phosphors were successfully synthesized by conventional solid state reaction method. The best intensity concentration of Sm3+ in LiLa(MoO4)2 host that was excited in 276 nm was determined to be 9%, and the concentration quenching mechanism was discussed to be the exchange interaction. We found that this host material had two crystal structures at different calcine temperatures. Two crystal structures were orthorhombic and tetragonal that emitted red-orange light and pink-purple light, respectively. LiLa(MoO4)2 that was Alkaline double molybdates with scheelite-like structure have high thermal and chemical stability, strong water persistence which can become a promising single-phased white-emitting phosphor for white LEDs devices. The emission color of LiLa(MoO4)2:Sm3+/Dy3+ and LiLa(MoO4)2:Sm3+/Tb3+ could be tuned to white by varying co-doping concentrations of Sm3+/Dy3+ and Sm3+/Tb3+ ions.
1. Jiao, M.M., N. Guo, W. Lu, Y.C. Jia, W.Z. Lv, Q. Zhao, B.Q. Shao, and H.P. You, Tunable Blue-Green-Emitting Ba3LaNa(PO4)(3)F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs. Inorganic Chemistry, 2013. 52(18): p. 10340-10346.
2. Steigerwald, D.A., J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, Illumination with solid state lighting technology. Ieee Journal of Selected Topics in Quantum Electronics, 2002. 8(2): p. 310-320.
3. Bachmann, V., C. Ronda, and A. Meijerink, Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce. Chemistry of Materials, 2009. 21(10): p. 2077-2084.
4. Lin, C.C., Y.S. Zheng, H.Y. Chen, C.H. Ruan, G.W. Xiao, and R.S. Liu, Improving Optical Properties of White LED Fabricated by a Blue LED Chip with Yellow/Red Phosphors. Journal of the Electrochemical Society, 2010. 157(9): p. II900-II903.
5. Xie, W., G. Liu, X. Dong, J. Wang, and W. Yu, A direct warm-white-light CaLa2(MoO4)(4): Tb3+, Sm3+ phosphor with tunable color tone via energy transfer for white LEDs. Rsc Advances, 2015. 5(95): p. 77866-77872.
6. Li, L., W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou, and X. Xu, Hydrothermal synthesis and luminescent properties of NaLa(MoO4)(2):Dy3+ phosphor. Journal of Solid State Chemistry, 2012. 191: p. 175-180.
7. Som, S., P. Mitra, V. Kumar, V. Kumar, J.J. Terblans, H.C. Swart, and S.K. Sharma, The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Transactions, 2014. 43(26): p. 9860-9871.
8. Guo, N., Y. Huang, M. Yang, Y. Song, Y. Zheng, and H. You, A tunable single-component warm white-light Sr3Y(PO4)(3):Eu2+,Mn2+ phosphor for white-light emitting diodes. Physical Chemistry Chemical Physics, 2011. 13(33): p. 15077-15082.
9. Raju, G.S.R., J.Y. Park, H.C. Jung, E. Pavitra, B.K. Moon, J.H. Jeong, and J.H. Kim, Excitation induced efficient luminescent properties of nanocrystalline Tb3+/Sm3+:Ca2Gd8Si6O26 phosphors. Journal of Materials Chemistry, 2011. 21(17): p. 6136-6139.
10. Liu, X., L. Li, H.M. Noh, J.H. Jeong, K. Jang, and D.S. Shin, Controllable synthesis of uniform CaMoO4:Eu3+, M+ (M = Li, Na, K) microspheres and optimum luminescence properties. Rsc Advances, 2015. 5(13): p. 9441-9454.
11. Li, A., D. Xu, H. Lin, S. Yang, Y. Shao, Y. Zhang, and Z. Chen, Facile morphology-controllable hydrothermal synthesis and color tunable luminescence properties of NaGd(MoO4)(2):Eu3+,Tb3+ microcrystals. Rsc Advances, 2015. 5(57): p. 45693-45702.
12. Wu, T., Y. Liu, Y. Lu, L. Wei, H. Gao, and H. Chen, Morphology-controlled synthesis, characterization, and luminescence properties of KEu(MoO4)(2) microcrystals. Crystengcomm, 2013. 15(14): p. 2761-2768.
13. Xu, L., X. Yang, Z. Zhai, D. Gu, H. Pang, and W. Hou, Self-assembled 3D architectures of NaCe(MoO4)(2) and their application as absorbents. Crystengcomm, 2012. 14(21): p. 7330-7337.
14. Xu, L., X. Yang, Z. Zhai, X. Chao, Z. Zhang, and W. Hou, EDTA-mediated hydrothermal synthesis of NaEu(MoO4)(2) microrugbies with tunable size and enhanced luminescence properties. Crystengcomm, 2011. 13(15): p. 4921-4929.
15. Tian, Y., B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, and H. Zhong, Self-assembled 3D flower-shaped NaY(WO4)(2):Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties. Crystengcomm, 2012. 14(5): p. 1760-1769.
16. Xu, Z., C. Li, G. Li, R. Chai, C. Peng, D. Yang, and J. Lin, Self-Assembled 3D Urchin-Like NaY(MoO4)(2):EU3+/Tb3+ Microarchitectures: Hydrothermal Synthesis and Tunable Emission Colors. Journal of Physical Chemistry C, 2010. 114(6): p. 2573-2582.
17. An, Z., X. Xiao, J. Yu, D. Mao, and G. Lu, Controlled synthesis and luminescent properties of assembled spherical YPxV1-xO4:Ln(3+) (Ln = Eu, Sm, Dy or Tm) phosphors with high quantum efficiency. Rsc Advances, 2015. 5(65): p. 52533-52542.
18. Kaczmarek, A.M. and R. Van Deun, Rare earth tungstate and molybdate compounds - from 0D to 3D architectures. Chemical Society Reviews, 2013. 42(23): p. 8835-8848.
19. Ye, S., F. Xiao, Y.X. Pan, Y.Y. Ma, and Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties. Materials Science & Engineering R-Reports, 2010. 71(1): p. 1-34.
20. Du, P. and J.S. Yu, Energy transfer mechanism and color controllable luminescence in Dy3+/Eu3+-codoped NaLa(MoO4)(2) phosphors. Journal of Alloys and Compounds, 2015. 653: p. 468-473.
21. Dutta, S., S. Som, and S.K. Sharma, Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Transactions, 2013. 42(26): p. 9654-9661.
22. Chen, F. and X. Liu, Structure and photoluminescence properties of La2Mo(W)O-6:Eu3+ as red phosphors for white LED applications. Optical Materials, 2013. 35(12): p. 2716-2720.
23. Mao, Z.Y. and Y.C. Zhu, Generation of tunable white light in blue-green self-activated Ba2TiSi2O8 phosphor by doping Sm3+ or Eu3+ ions. Materials Research Bulletin, 2014. 51: p. 197-201.
24. Liu, X., W. Hou, X. Yang, and J. Liang, Morphology controllable synthesis of NaLa(WO4)(2): the morphology dependent photoluminescent properties and single-phased white light emission of NaLa(WO4)(2): Eu3+/Tb3+/Tm3+. Crystengcomm, 2014. 16(7): p. 1268-1276.
25. Dutta, S. and S.K. Sharma, Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6. Journal of Materials Science, 2016. 51(14): p. 6750-6760.
26. Liu, Y., G.X. Liu, J.X. Wang, X.T. Dong, and W.S. Yu, Single-Component and Warm-White-Emitting Phosphor NaGd(WO4)(2):Tm3+, Dy3+, Eu3+: Synthesis, Luminescence, Energy Transfer, and Tunable Color. Inorganic Chemistry, 2014. 53(21): p. 11457-11466.
27. Hou, L., S. Cui, Z. Fu, Z. Wu, X. Fu, and J.H. Jeong, Facile template free synthesis of KLa(MoO4)(2): Eu3+, Tb3+ microspheres and their multicolor tunable luminescence. Dalton Transactions, 2014. 43(14): p. 5382-5392.
28. Zeng, Y., Z. Li, L. Wang, and Y. Xiong, Controlled synthesis of Gd-2(WO4)(3) microstructures and their tunable photoluminescent properties after Eu3+/Tb3+ doping. Crystengcomm, 2012. 14(20): p. 7043-7048.
29. Yan, J., X. Xiao, J. Yu, D. Mao, and G. Lu, White light emission materials of self-assembled rare earth molybdates NaRe(MoO4)(2) micro-particles: the controllable synthesis, growth mechanism and luminescent properties. Crystal Research and Technology, 2015. 50(7): p. 580-593.
30. Wu, L., Y. Zhang, M. Gui, P. Lu, L. Zhao, S. Tian, Y. Kong, and J. Xu, Luminescence and energy transfer of a color tunable phosphor: Dy3+-, Tm3+-, and Eu3+-coactivated KSr4(BO3)(3) for warm white UV LEDs. Journal of Materials Chemistry, 2012. 22(13): p. 6463-6470.
31. Cai, G.M., N. Yang, H.X. Liu, J.Y. Si, and Y.Q. Zhang, Single-phased and color tunable LiSrBO3:Dy3+, Tm3+, Eu3+ phosphors for white-light-emitting application. Journal of Luminescence, 2017. 187: p. 211-220.
32. Li, L.L., Y.L. Liu, R.Q. Li, Z.H. Leng, and S.C. Gan, Tunable luminescence properties of the novel Tm3+- and Dy3+-codoped LiLa(MoO4)(x)(WO4)(2-x) phosphors for white light-emitting diodes. Rsc Advances, 2015. 5(10): p. 7049-7057.
33. Li, T., C.F. Guo, P.J. Zhao, L. Li, and J.H. Jeong, Tailorable Multicolor Up-conversion Emissions in Tm3+/Ho3+/Yb3+ Co-Doped LiLa(MoO4)(2). Journal of the American Ceramic Society, 2013. 96(4): p. 1193-1197.
34. Klevtsov, P.V. and L.P. Kozeeva, Synthesis of double lithium molybdates of rare earths and yttrium. Inorganic Materials, 1969. 5: p. 1571-1572
35. Klevtsova, R.F., Crystal structure of lithium-lanthanum molybdate α-LiLa(MoO4)2. Kristallografiya, 1975. 20(4): p. 746-750.
36. Du, M.H., Using DFT Methods to Study Activators in Optical Materials. Ecs Journal of Solid State Science and Technology, 2016. 5(1): p. R3007-R3018.
37. 如熹, 劉., 發光二極體用氧氣螢光粉介紹. 全華科技圖書, 2006.
38. Barber, B.P., R.A. Hiller, R. Lofstedt, S.J. Putterman, and K.R. Weninger, Defining the unknowns of sonoluminescence. Physics Reports-Review Section of Physics Letters, 1997. 281(2): p. 65-143.
39. 如熹, 劉. and 紀. 喨勝, 紫外光發光二極體用螢光分介紹. 全華科技圖書, 2003.
40. Blasse, G. and B. Grabmaier, Luminescent materials. Springer Science & Business Media, 2012.
41. Henderson, B. and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids. Oxford University Press, 2006.
42. Kenyon, A.J., Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics, 2002. 26(4-5): p. 225-284.
43. Kitai, A.H., Solid State Luminescence: Theory, materials and devices. Springer Science & Business Media, 2012.
44. Jones, L., P. Atkins, and P.A. Loretta Jones, Chemistry: Molecules, Matter, and Change, 4th Edition. 2001.
45. Vij, D.R., Luminescence of Solids. Springer Science & Business Media, 2012.
46. Klick, C.C. and J.H. Schulman, LUMINESCENCE IN SOLIDS. Solid State Physics, 1957. 5: p. 97-172.
47. 鏘, 蘇., 稀土化學. 鄭州: 河南科學技術出版社, 1993.
48. Barrow, R.F., HANDBOOK ON THE PHYSICS AND CHEMISTRY OF RARE-EARTHS, VOL 5 - GSCHNEIDER,KA, EYRING,L. Contemporary Physics, 1984. 25(2): p. 200-201.
49. Chan, E.M., Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. Chemical Society Reviews, 2015. 44(6): p. 1653-1679.
50. Chien, T.C., C.S. Hwang, M. Yoshimura, and Y.T. Nien, Synthesis and photoluminescence properties of fluorite-related (Y1-xEux)(10)W2O21 phosphor. Ceramics International, 2015. 41(1): p. 155-161.
51. Bi, W., Q. Meng, and W. Sun, Luminescent properties and energy transfer mechanism of NaGd(MoO4)2:Sm3+, Eu3+ phosphors. Ceramics International, 2016. 42(12): p. 14086-14093.
52. Wang, J.X., L. Luo, B.Y. Huang, J.Q. He, W. Zhang, W.R. Zhao, and J.Q. Wang, The Preparation and Optical Properties of Novel LiLa(MoO4)(2):Sm3+,Eu3+ Red Phosphor. Materials, 2018. 11(2): p. 18.
53. Atuchin, V.V., A.S. Aleksandrovsky, M.S. Molokeev, A.S. Krylov, A.S. Oreshonkov, and D. Zhou, Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)(4). Journal of Alloys and Compounds, 2017. 729: p. 843-849.
54. Atuchin, V.V., A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, and Z. Xia, Synthesis and spectroscopic properties of multiferroic beta '-Tb-2(MoO4)(3). Optical Materials, 2014. 36(10): p. 1631-1635.
55. Atuchin, V.V., T.A. Gavrilova, T.I. Grigorieva, N.V. Kuratieva, K.A. Okotrub, N.V. Pervukhina, and N.V. Surovtsev, Sublimation growth and vibrational microspectrometry of alpha-MoO3 single crystals. Journal of Crystal Growth, 2011. 318(1): p. 987-990.
56. Troitskaia, I.B., T.A. Gavrilova, S.A. Gromilov, D.V. Sheglov, V.V. Atuchin, R.S. Vemuri, and C.V. Ramana, Growth and structural properties of alpha-MoO3 (010) microplates with atomically flat surface. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2010. 174(1-3): p. 159-163.
57. Dmitriev, V., V. Sinitsyn, R. Dilanian, D. Machon, A. Kuznetsov, E. Ponyatovsky, G. Lucazeau, and H.P. Weber, In situ pressure-induced solid-state amorphization in Sm-2(MoO4)(3), Eu-2(MoO4)(3) and Gd-2(MoO4)(3) crystals: chemical decomposition scenario. Journal of Physics and Chemistry of Solids, 2003. 64(2): p. 307-312.
58. Macalik, L., Comparison of the spectroscopic and crystallographic data of Tm3+ in the different hosts: KLn(MO4)(2) where Ln=Y,La,Lu and M=Mo,W. Journal of Alloys and Compounds, 2002. 341(1-2): p. 226-232.
59. Hanuza, J., L. Macalik, and K. Hermanowicz, VIBRATIONAL PROPERTIES OF KLN(MOO4)2 CRYSTALS FOR LIGHT RARE-EARTH IONS FROM LANTHANUM TO TERBIUM. Journal of Molecular Structure, 1994. 319: p. 17-30.
60. Buijs, M., G. Blasse, and L.H. Brixner, NONRESONANT ENERGY-TRANSFER IN A SYSTEM WITH 2 DIFFERENT RARE-EARTH SITES - BETA'-GD2(MOO4)3-EU-3+ AND BETA'-EU-2(MOO4)3. Physical Review B, 1986. 34(12): p. 8815-8821.
61. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York, 2009.
62. Xu, S., X.Y. Huang, B.X. Li, Y. Wei, C.H. Huang, F.J. Zhuang, W.D. Chen, S.Y. Zhai, and G. Zhang, Spectra and broad-spectral laser operation of a disordered Nd:LiLa(MoO4)(2) crystal. Journal of Modern Optics, 2013. 60(11): p. 920-924.
63. Maczka, M., E.P. Kokanyan, and J. Hanuza, Vibrational study and lattice dynamics of disordered NaBi(WO4)(2). Journal of Raman Spectroscopy, 2005. 36(1): p. 33-38.
64. Moura, J.V.B., G.S. Pinheiro, J.V. Silveira, P.T.C. Freire, B.C. Viana, and C. Luz-Lima, NaCe(MoO4)(2) microcrystals: Hydrothermal synthesis, characterization and photocatalytic performance. Journal of Physics and Chemistry of Solids, 2017. 111: p. 258-265.
65. Dexter, D.L. and J.H. Schulman, THEORY OF CONCENTRATION QUENCHING IN INORGANIC PHOSPHORS. Journal of Chemical Physics, 1954. 22(6): p. 1063-1070.
66. Blasse, G., ENERGY TRANSFER IN OXIDIC PHOSPHORS. Philips Research Reports, 1969. 24(2): p. 131-&.
67. Tran, N.T., J.P. You, and F.G. Shi, Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED. Journal of Lightwave Technology, 2009. 27(22): p. 5145-5150.
68. Wang, K., Y. Liu, G.Q. Tan, D.H. Liu, S.Y. Ma, and M.Z. Zhao, Structure, luminescence and energy transfer of LiLa(MoO4)(2):Dy3+, Eu3+ crystal. Journal of Luminescence, 2018. 197: p. 354-359.
69. Yang, M., Y.L. Liang, Q.Y. Gui, B.X. Zhao, D.Y. Jin, M.M. Lin, L. Yan, H.P. You, L.M. Dai, and Y. Liu, Multifunctional luminescent nanomaterials from NaLa(MoO4)(2):Eu3+/Tb3+ with tunable decay lifetimes, emission colors, and enhanced cell viability. Scientific Reports, 2015. 5: p. 12.
70. Chen, J., Y.H. Song, Y. Sheng, M.Q. Chang, X.M. Xie, M.M.A. Abualrejal, H.X. Guan, Z. Shi, and H.F. Zou, Luminescence properties and Judd-Ofelt analysis of SiO2:Ln(3+)(Eu, Tb) hollow nanofibers fabricated by co-axial electrospinning method. Journal of Alloys and Compounds, 2017. 716: p. 144-155.
校內:2023-07-01公開