| 研究生: |
邱韻芳 Chiu, Yun-Fang |
|---|---|
| 論文名稱: |
Pb(Zr0.52Ti0.48)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3陶瓷之製作及其在壓電變壓器的應用 Fabrications of Pb(Zr0.52Ti0.48)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3 Ceramics and Their Applications on the Piezoelectric Transformers(PT) |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 壓電變壓器 、介電特性 、微結構分析 |
| 外文關鍵詞: | Piezoelectric transformer, Microstructure analysis, Dielectric properties |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋯鈦酸鉛(PZT)為最普遍被廣泛應用之壓電材料。本實驗中採用屬於hard piezoelectric的PMS及soft piezoelectric的PZN兩組成,探討PMS含量的增加對PZT-PMS-PZN系統的影響,及添加氧化銅(CuO)對0.9PZT-0.1PMS之影響。實驗結果在PMS為4mole%時,有較佳的機電耦合因數,其徑向機電耦合因數(kp)和厚度機電耦合因數(kt)皆為51%,機械品質因數(Qm)為1060,居里溫度為305°C,經由電滯曲線量測其Ec值為6.57kV/cm,Pr值為23.3μC/cm2。添加CuO做液相燒結,在0.3wt%時有較好的徑向機電耦合因數(kp)和厚度機電耦合因數(kt),分別為30%和32%,機械品質因數為1181,居里溫度為255°C,經由電滯曲線量測其Ec值為6.23kV/cm,Pr值為12.7μC/cm2。本實驗亦成功的以.9PZT-4%PMS-6%PZN組成,製作出壓電變壓器元件,並量得其匹配負載電阻為7kΩ時,有最大轉換效率94.8%,且成功點亮14瓦T5螢光燈管。
PZT is the most common piezoelectric material. In this report, we choose the hard piezoelectric material, PMS, and the soft piezoelectric material, PZN, investigating the PMS content in the PZT-PMS-PZN system. Also, we investigate the doping effect by introducing CuO into 0.9PZT-0.1PMS ceramics.The result shows that 4 mole% PMS has the better electromechanical planar and thickness coupling coefficients of kp =51% and kt=51%, the mechanical quality factor Qm=1060, and the Curie temperature Tc=305°C. According to the P-E measurements, the coercive flied and remanent polarization are 6.57kV/cm and 23.3μC/cm2. The CuO doped with 0.3wt% CuO provide the electromechanical planar and thickness coupling coefficients of kp =30% and kt=32%, the mechanical quality factor Qm=1181, and the Curie temperature Tc=255°C. According to the P-E measurements, the coercive flied and remanent polarization are 6.23kV/cm and 12.7μC/cm2, respectively. In this report, we successfully fabricated the piezoelectric transformer with the 0.9PZT-4%PMS-6%PZN substrates. The matching load of the piezoelectric transformer is 7kΩ, and the efficiency can reach 94.8%,where the theoretical efficiency is 97.1%. Also, a 14W fluorescent lamp was successfully driven using the fabricated piezoelectric transformer.
[1] S. Roberts, “Dielectric and piezoelectric properties of barium titanate” J. Phys. Rev., 71, 890 (1947).
[2] B. Jaffe, R.S. Roth and S. Marzullo, “Properties of piezoelectric eramics in solid solution series PbTiO3-PbZrO3-PbO-SnO and PbTiO3-PbHfO3” J. Res. Nat. Bur. Stds., 55, 239 (1955).
[3] Q. Tan and D. Viehland, “Influence of thermal and electrical histories on domain structure and polarization switching in potassium-modified lead zirconate titanate ceramics” J. Am. Ceram. Soc., 81, 328 (1998).
[4] J. M. Herbert, Ferroelectric Transducers and Sensors, Gordon and Breach, New York (1982).
[5] J. Hu, Y. Fuda, M. Katsuno and T.Yoshida, “Electrical properties of low temperature sintering step-down multilayer piezoelectric transformer” Jap. J. Appl. Phys., 38, 3208 (1999).
[6] T. Idogaki, T. Tominaga, K. Senda, N. Ohya and T. Hattori, “Bending and expanding motion actuators, Sensors and Actuators” Sensors and Actuators A., 54, 760 (1996).
[7] C. Galassi, G. Camporesi, G. Fabbri, A.L. Costa and E. Roncari, “Processing of a multilayer bender type actuator” J. Eur. Ceram. Soc., 21, 2011 (2001).
[8] E. Defaÿ, C. Millon, C. Malhaire and D. Barbier, “PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane” Sensors and Actuators A., 99, 64 (2002).
[9] P. Verardi, M. Dinescu, F. Craciun, R. Dinu, V. Sandu, L. Tapfer and A. Cappello, “Pulsed laser deposition of multilayer TiN/Pb(ZrxTi1-x)O3 for piezoelectric microdevices” Sensors and Actuators A., 74, 41 (1999).
[10] R. Z. Zuo, L. T. Li and Z. L. Gui, “Modified cofiring behaviors between PMN-PNN-PT piezoelectric ceramics and PZT-doped 70Ag-30Pd alloy metallization” Mater. Sci. Eng A., 326, 202 (2002).
[11] K. Saegusa, “Preparation by a sol-gel process and dielectric properties of lead-zirconate-titanate glass-ceramic thin films” Jpn. J. Appl. Phys., 36, 3602 (1997).
[12] D. E. Wittmer and R. C. Buchanan, “Low-temperature densification of lead-zirconate-titanate with vanadium pentoxide addtive” J. Am. Ceram. Soc., 64, 485 (1981).
[13] Z. Gui, L. Li, S. Gao and X. Zhang, “Low-temperature sintering of lead-based piezoelectric ceramics” J. Am. Ceram. Soc., 72, 486 (1989).
[14] S. Takahashi, “Sintering Pb(Zr,Ti)O3 ceramics at low temperature” Jpn. J. Appl. Phys., 19, 771 (1980).
[15] S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, A. Fukuoka, T. Inoue, and S. Hirose, Proc.-IEEE Ultrason. Symp. 1, 525 (1994)
[16] Y. Fuda, K. Kumasaka, M. Katsuno, H. Sato, and Y. Ino, Jpn. J. Appl. Phys., Part 1 36, 3050 (1997).
[17] O. Ohnishi, H. Kishie, A. Iwamoto, Y. Sasaki, T. Zaitsu, and T. Inoue, Proc.-IEEE Ultrason. Symp. 1, 483 (1992).
[18] J. H. Hu, Y. Fuda, M. Katsuno, and T. Yoshida, Jpn. J. Appl. Phys., Part 1 38, 3208 (1999).
[19] M. Yamamoto, Y. Sasaki, A. Ochi, T. Inoue, and S. Hamamura, Jpn. J. Appl. Phys., Part 1 40, 3637 (2001).
[20] T. Tsuchiya, Y. Kagawa, N. Wakatsuki, and H. Okamura, “Finite Element Simulation of Piezoelectric Transformers” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, July (2001).
[21] P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, “Unipoled Disk-type Piezoelectric Transformers” Jpn. J. Appl. Phys. 41, 1446 (2002)
[22] L. Longtu, Z. Ningxin, B. Chenyang, C. Xiangcheng, and G. Zhilun, “Multilayer piezoelectric ceramic transformer with low temperature sintering” J. Mater. Sci., 41, 155 (2006).
[23] K. T. Chang, H. C. Chiang, and K. S. Lyu, “Effect of electrode layouts on voltage gain characteristics for ring-shaped piezoelectric transformers” Sensors and Actuators A, 141, 166 (2008).
[24] Lin Sun, Chude Feng, Qingchi Sun, Hua Zhou, “Study on Pb(Zr,Ti)O3-
Pb(Zb1/3Nb2/3)O3-Pb(Sn1/3Nb2/3)O3-Pb(Mn1/3Sb2/3)O3 quinary system pie-
zoelectric ceramics” Materials Science and Engineering B, 122, 61 (2005).
[25] Z. P. Yang, Y. F. Chang, X. M. Zong, J. K. Zhu, “Preparation and properties of PZT-PMN-PMS ceramics by molten slat synthesis” Materials Letters, 59, 2790 (2005).
[26] Z. P. Yang, R. Zhang, L. L. Yang, Y. F. Chang, “Effects of Cr2O3 doping on the electrical properties and the temperature stabilties of PNW-PMN PZT ceramics” Materials Research Bulletin, 42, 2156 (2007).
[27] Z. P. Yang, X. L. Chao, C. Kang, R. Zhang, “Low temperature sintering and properties of piezoelectric PZT- PFW- PMN ceramics with YMnO3 addition” Low temperature sintering and properties of piezoelectric PZT-
PFW-PMN ceramics with YMnO3 addition” Materials Research Bulletin, 43, 38 (2008).
[28] H. L. Du, Z. B. Pei, W. C. Zhou, F. Luo, S. B. Qu, “Effect of addition of MnO2 on piezoelectric properties of PNW-PMS-PZT eramics”Materials Science and Engineering A, 421, 286 (2006).
[29] Z. P. Yang, H. Li, X. M. Zong, Y. F. Chang, “Structure and electriacal properties of PZT- PMS-PZN piezoelectirc ceramics” Journal of the European Ceramic Society, 26, 3197 (2006).
[30] 汪建民, “陶瓷技術手冊 (上)” 金華科技圖書, 100, (1999).
[31] D. L. Corker, R .W. Whatmore, E. Ringgaard and W. W. Wolny, “Liquid phase sintering of PZT ceramics” J. Euro. Ceram. Soc., 20, 2039 (2000).
[32] 吳朗, “電子陶瓷(壓電)” 全欣科技圖書, 7 (1994).
[33] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics”, Cleveland, Ohio, 25 (1971).
[34] B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Cleveland, Ohio (1971).
[35] A. J. Moulson and J. M. Herbert, “Electroceramics”, 347 (2003).
[36] 邱碧秀, “電子陶瓷材料” 全欣科技圖書, 50 (1997).
[37] 吳朗, “電子陶瓷(介電)” 全欣科技圖書, 69-73 (1994).
[38] J. L. Du, J. H. Hu, K. J. Tseng, C. S. Kai, and G. C. Siong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 579 (2006).
[39] 邱良祥, “環形壓電變壓器應用於直流電源轉換器之研究” ,國立成功大學電機工程學系碩士論文, 2002.
[40] 張博舜, “圓盤形壓電變壓器之研究” ,國立高雄應用科技大學機械與精密工程研究所碩士論文, 2007.
[41] G. Mingsen, D. M. Lin, K. H. Lam, S. Wang, Helen L. W. Chan, and X. Z. Zhao, “A lead-free piezoelectric transformer in radial vibration modes” Review of Scientific Instruments 78, 035102 (2007).
[42] “IRE Standards on Piezoelectric Crystals, Measurements of Piezoelectric
Ceramics” Proc. IRE, 49, 1161 (1961).
[43] M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, “Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics” Jpn. J. Appl. Phys., 44, 6136 (2005).
[44] Y. D. Hou, M. K. Zhu, F. Gao, H. Wang, B. Wang, H.Yan and C. S. Tian, “Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3 ceramics” J. Am. Ceram. Soc., 87, 847 (2004).
[45] K. Toshio, S. Toshimasa, T. Takaaki and D. Masaki, “Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3” Jpn. J. Appl. Phys., 31, 3058 (1992).
[46] S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim and K. W. Lee, “Low-temperature sintering of MnO2-doped PZT-PZN Piezoelectric ceramics” J Electroceram 18:311-315 (2007).
[47] 歐敏男, “La1-xAxMnO3(A=Ca、Sr)薄膜增強磁阻效應之研究” ,國立中山大學物理研究所碩士論文, 2000.
[48] 蔡淑卿, “ZnO與ZnS摻猛螢光薄膜之發光性質研究” ,國立成功大學材料科學及工程研究所碩士論文, 2004.
[49] Huiqing Fan amd Hyoun-Ee Kim, “Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate-lead zirconate titanate”, Journal of Applied Physics, Vol. 91, No. 1, (2001).
[50] 吳夏語, “鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究” ,國立台灣科技大學材料科技研究所碩士學位論文, 2006.
[51] Z. G. Zhu, G. R. Li, Z. J. Xu, W. Z. Zhang and Q. R. Yin, “Effect of PMS modification on dielectric and piezoelectric properties in xPMS-(1-x)PZT ceramics” J. Phys. D: Appl. Phys. 38, 1464-1469 (2005).
[52] C. S. Hong, S. Y. Chu, W. C. Su, R. C. Chang, H. H. Nien and Y. D. Juang, “The dependence of the synthesis condition on the dielectric behaviors of the 0.75Pb(Fe2/3W1/3)O3-0.25PbTiO3 based ceramics” Journal of Alloys and Compounds 459, 328-332 (2008).
[53] D. Viehland, S. J. Jang and L. E. Cross, “Freezing of the polarization fluctuations in lead magnesium niodate relaxors” J. Appl. Phys., Vol. 68, No. 6, 15 September, 2916-2921 (1990).
[54] 吳朗, “電工材料” 滄海圖書, 297-298, (1998).
[55] C. W. Woo, H. C. Song, S. Nahm, S. Priya, S. H. Park, K. Uchino, H. G. Lee and H. J. Lee “Effect of ZnO and CuO on the sintering temperature and piezoelectric properties of a hard piezoelectric ceramic” J. Am. Ceram. Soc., 89, 921 (2006).
[56] E. M. Levin, C. R. Robbins and H. F. Mcmurdie, “Phase diagrams for ceramists” Am. Ceram. Soc., Ohio, 126 (1979).
[57] C. C. Tsai, S. Y. Chu, and C. H. Lu, “Doping Effects of CuO Additives on the Properties of Low-Temperature-Sintered PMnN-PZT-Baesd Piezoele-
ctric Ceramics and Their Applications on Surface Acoustic Wave Devices
’’IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol 56, No. 3, 660 (2009)