| 研究生: |
方盈倩 Fang, Ying-Chien |
|---|---|
| 論文名稱: |
開發照明用螢光體與螢光特性分析 Development of Phosphors for Lighting and Analysis of Their Luminescent Properties |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 螢光粉 、發光二極體 、鉬酸鹽 、氮氧化物 、熱穩定性 、封裝 、能量轉移 |
| 外文關鍵詞: | phosphor, LEDs, molybdate, oxynitride, thermal stability, energy transfer, remote |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提升目前常用之白光LED元件 (blue LED+YAG: Ce3+)之演色性,開發適合綠色與紅色螢光粉是必要的。本研究分為三個部份,第一部分,本研究發現Sm3+藉由能量轉移方式可以增強Eu3+紅光表現,但會減弱螢光粉體之熱穩定。因此探討增感劑離子Sm3+ 對Eu3+摻雜-紅光鉬酸鹽類螢光粉之熱淬滅行為影響可能原因也許是由於Sm3+共摻雜後使得較低CTS能階出現使得熱穩定性減弱或是由於彼此間4f能階差異小,熱使電子在彼此能階中以非輻射方式來回跳躍傳遞,減弱發光特性。
第二部分為開發常壓製程之氮氧化物螢光粉。首先探討Si-N含量對發光與熱穩定之影響。當Si-N含量增加時,提供具有較高共價性環境,使得Eu2+發光產生紅位移現象,同時其激發光譜也變得更寬廣(UV-blue range),亦提升螢光粉體之熱穩定性(其熱淬滅溫度大於175oC)。另一方面,利用矽酸鹽為前驅物進行二階段合成方式製備氮氧化物綠色螢光粉體,此方式提供一個容易反應路徑,可提升氮氧化物螢光粉之結晶性、發光與熱穩定之特性。
第三部分,將二階段合成之氮氧化物螢光粉在高溫高濕(85oC與濕度85%)環境下進行可靠性評估,發現此氮氧化物螢光粉具有不錯的熱穩定性與濕度穩定性,適合應用於固態照明。同時將含二價銪離子之鋇氮氧化物與鍶氮氧化物藍、綠光螢光粉搭配商用紅色螢光粉與商用藍光LED結合製作成白光LED。發現使用兩種以上之螢光粉之白光LED具有較高演色性(大於75)。同時探討不同封裝方式對白光LED之電穩定性之影響。藉由遠距封裝方式可以提升演色性,亦改善LED電穩定性,使得LED元件在較高電流驅動下可以盡量維持其顏色一致性。同時白光LED元件亦進行85oC與濕度85%之環境測試,其結果顯示本研究之白光LED元件兼具可靠性與實際應用性。
To enhance the CRI of white-LEDs, developing green- and red- phosphors are necessary. This thesis is composed of three parts. Part (1), the red emission intensity of Eu3+ dopants in molybdate-based red phosphor is enhanced by Sm3+ ion co-doping. The reasons of weaken the thermal stability of Eu3+-activated phosphors may be the lower energy of the CTS band, and thermal quenching between 4f levels. Thus, the trade-off between increasing emission intensity and thermal stability of Eu3+ and Sm3+ co-doping in other phosphors should be considered whether the CTS band shifts to higher or lower energy after Sm3+ co-doping and a small energy different in 4f energy levels. Part (2), oxynitride phosphors are prepared using a convenient solid-state reaction Si–N content effect on the luminescence and thermal stability of these phosphors are reported. This incorporation of Si–N effect drastically changes the bonds of phosphor materials from being ionic-rich to being covalent-rich. Improved properties method of oxynitride phosphors is two-step synthesis method, which are investigated by using differential thermal analysis (DTA) spectra and luminescence measurements. Oxynitride green phosphors exhibit excellent thermal stability and color stability. The thermal quenching temperature (T50) of Eu2+ doped oxynitride phosphor is above 150 oC. Results show that oxynitride green phosphors have a broad excitation band, good thermal stability, and good humidity stability, making them suitable for use in solid-state lighting.
Part (3), Using 2pc- or 3pc-WLEDs, the color rendering index is higher than 75, and is better than that of conventional 1pc-WLEDs (blue-chip+ YAG: Ce3+). In addition, remote phosphor packaging type is very important and efficient method to improve electric stability of pc-WLEDs under various driven-current. Fabrication of 3pc-WLEDs with remote type on a blue LED chip has the real application capability.
References
[1] C. Ronda, "Luminescence: from theory to applications." Weinheim: Wiley-VCH,
(2008).
[2] S. Nakamura, M. Senoh, and T. Mukai, "High power InGaN/GaN double
heterostructure violet light emitting diodes," Appl. Phys. Lett., 62, 2390 (1993).
[3] R.-J. Xie, Y. Q. Li, N. Hirosaki, and H. Yamamoto, "Nitride Phosphors and Solid State
Lighting." CRC Press, Taylor & Francis (2011).
[4] Y.-C. Fang, S.-Y. Chu, P.-C. Kao, Y.-M. Chuang, and Z.-L. Zeng, "Energy Transfer and
Thermal Quenching Behaviors of CaLa2(MoO4)4: Sm3+,Eu3+ Red Phosphors," J. Electrochem. Soc., 158, J1 (2011).
[5] Y.-C. Fang, P.-C. Kao, and S.-Y. Chu, "Effect of Si-N Incorporation on Color-Tunable
CaEuAl2-xSixO4-xNx Phosphors: Luminescence, Thermal Stability, and Its Application," J. Electrochem. Soc., 158, J120 (2011).
[6] Y.-C. Fang, P.-C. Kao, Y.-C. Yang, and S.-Y. Chu, "Two-Step Synthesis of SrSi2O2N2:
Eu2+ Green Oxynitride Phosphor: Electron-Phonon Coupling and Thermal Quenching Behavior," J. Electrochem. Soc., 158, J246 (2011).
[7] G. Blasse and B. Grabmaier, "Luminescent materials." Springer, Berlin, German,
(1994).
[8] S. Shionoya, W. M. Yen, and T. Hase, "Phosphor handbook." CRC press, New York,
(1999).
[9] J. Sole, L. Bausa, and D. Jaque, "An introduction to the optical spectroscopy of
inorganic solids." Wiley, (2005).
[10] Y. Fukuda, K. Ishida, I. Mitsuishi, and S. Nunoue, "Luminescence Properties of
Eu2+-Doped Green-Emitting Sr-Sialon Phosphor and Its Application to White Light-Emitting Diodes," Appl. Phys. Express, 2, 2401 (2009).
[11] A. H. Kitai, "Solid state luminescence: theory, materials, and devices," 1st ed.
Chapman & Hall, (1993).
[12] D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys., 21,
836 (1953).
[13] P. Paulose, G. Jose, V. Thomas, N. Unnikrishnan, and M. Warrier, "Sensitized
fluorescence of Ce3+/Mn2+ system in phosphate glass," J. Phys. Chem. Solids, 64, 841
(2003).
[14] P. Biju, G. Jose, V. Thomas, V. Nampoori, and N. Unnikrishnan, "Energy transfer in
Sm3+: Eu3+ system in zinc sodium phosphate glasses," Opt. Mater., 24, 671 (2004).
[15] G. Blasse, "Energy transfer in oxidic phosphors," Philips Res. Rep., 24, 131 (1969).
[16] H. Jiao, F. Liao, S. Tian, and X. Jing, "Luminescent properties of Eu3+ and Tb3+
activated Zn3Ta2O8," J. Electrochem. Soc., 150, H220 (2003).
[17] X. Yang, J. Liu, H. Yang, X. Yu, Y. Guo, Y. Zhou, and J. Liu, "Synthesis and
characterization of new red phosphors for white LED applications," J. Mater. Chem., 19,
3771 (2009).
[18] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M.
Tsai, G. C. Chi, and R. K. Wu, "White-light emission from near UV InGaN-GaN LED chip
precoated with blue/green/red phosphors," IEEE Photonics Technol. Lett., 15, 18 (2003).
[19] Z. Wang, H. Liang, J. Wang, M. Gong, and Q. Su, "Red-light-emitting diodes
fabricated by near-ultraviolet InGaN chips with molybdate phosphors," Appl. Phys. Lett.,
89, 071921 (2006).
[20] R.-J. Xie, N. Hirosaki, M. Mitomo, K. Takahashi, and K. Sakuma, "Highly efficient
white-light-emitting diodes fabricated with short-wavelength yellow oxynitride
phosphors," Appl. Phys. Lett., 88, 101104 (2006).
[21] A. Setlur, H. Comanzo, A. Srivastava, and W. Beers, "Spectroscopic evaluation of a white light phosphor for UV-LEDs-Ca2NaMg2V3O12: Eu3+," J. Electrochem. Soc., 152, H205 (2005).
[22] Y. Voron'ko, "Spectroscopic investigations of NaGd(WO4)2 and NaLa(MoO4)2 single
crystals doped by Yb3+ ions," Proc. SPIE, 5478, 60 (2004).
[23] C. Cascales, A. Mendez Blas, M. Rico, V. Volkov, and C. Zaldo, "The optical
spectroscopy of lanthanides R3+ in ABi(XO4)2 (A= Li, Na; X= Mo, W) and LiYb(MoO4)2
multifunctional single crystals: Relationship with the structural local disorder," Opt. Mater., 27, 1672 (2005).
[24] R. Reisfeld and L. Boehm, "Energy Transfer Between Samarium and Europium in
Phosphate Glasses," J. Solid State Chem., 4, 417 (1972).
[25] Z. Wang, H. Liang, M. Gong, and Q. Su, "Novel red phosphor of Bi3+, Sm3+
co-activated NaEu(MoO4)2," Opt. Mater., 29, 896 (2007).
[26] Y. Jin, J. Zhang, S. Lu, H. Zhao, X. Zhang, and X.-J. Wang, "Fabrication of Eu3+ and
Sm3+ Codoped Micro/Nanosized MMoO4 (M = Ca, Ba, and Sr) via Facile Hydrothermal
Method and Their Photoluminescence Properties through Energy Transfer," J. Phys. Chem.
C, 112, 5860 (2008).
[27] Y.-H. Won, H. S. Jang, W. B. Im, and D. Y. Jeon, "Red-Emitting LiLa2O2BO3: Sm3+,
Eu3+ Phosphor for Near-Ultraviolet Light-Emitting Diodes-Based Solid-State Lighting," J.
Electrochem. Soc., 155, J226 (2008).
[28] R. C. A. Keller, G. Blasse, T. Lindholm, and M. Leskelä, "The luminescence of doped
and undoped BaLn2(MoO4)4 (Ln = La,Gd)," Mater. Chem. Phys., 20, 589 (1988).
[29] Z. Wang, H. Liang, M. Gong, and Q. Su, "A Potential Red-Emitting Phosphor for
LED Solid-State Lighting," Electrochem. Solid-State Lett., 8, H33 (2005).
[30] W.-J. Yang and T.-M. Chen, "White-light generation and energy transfer in
SrZn2(PO4)2: Eu, Mn phosphor for ultraviolet light-emitting diodes," Appl. Phys. Lett., 88,
101903 (2006).
[31] T. Luxbacher, H. Fritzer, and C. Flint, "Competitive cross-relaxation and energy
transfer within the shell model: The case of Cs2NaSmxEuyY1-x-yCl6," J. Lumin., 71, 177
(1997).
[32] X. Liu, L. Yan, and J. Lin, "Tunable Photoluminescence and Cathodoluminescence
Properties of Eu3+ Doped LaInO3 Nanocrystalline Phosphors," J. Electrochem. Soc., 156,
P1 (2009).
[33] H. L. Li, Z. L. Wang, S. J. Xu, and J. H. Hao, "Improved Performance of Spherical
BaWO4: Tb3+ Phosphors for Field-Emission Displays," J. Electrochem. Soc., 156, J112
(2009).
[34] K.-S. Sohn, Y. G. Choi, Y. Y. Choi, and H. D. Park, "Energy Transfer Between Tb3+
Ions in YAlO3 Host," J. Electrochem. Soc., 147, 3552 (2000).
[35] Y.-S. Tang, S.-F. Hu, W.-C. Ke, C. C. Lin, N. C. Bagkar, and R.-S. Liu,
"Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2: Eu2+ phosphor for potential
application in light-emitting diodes," Appl. Phys. Lett., 93, 131114 (2008).
[36] V. Bachmann, A. Meijerink, and C. Ronda, "Luminescence properties of SrSi2AlO2N3
doped with divalent rare-earth ions," J. Lumin., 129, 1341 (2009).
[37] Y.-C. Chang, C.-H. Liang, S.-A. Yan, and Y.-S. Chang, "Synthesis and
Photoluminescence Characteristics of High Color Purity and Brightness
Li3Ba2Gd3(MoO4)8: Eu3+ Red Phosphors," J. Phys. Chem. C, 114, 3645 (2010).
[38] C. Struck and W. Fonger, "Dissociation of Eu+3 Charge-Transfer State in Y2O2S and
La2O2S into Eu+2 and a Free Hole," Phys. Rev. B, 4, 22 (1971).
[39] C. Pedrini, "Electronic processes in rare earth activated wide gap materials," Phys.
Status Solidi (a), 202, 185 (2005).
[40] H. Hintzen and M. Van De Sanden, "Device For Converting Electromagnetic
Radiation Energy Into Electrical Energy And Method Of Manufacturing Such A Device."
WO Patent WO/2007/107, 452, (2007).
[41] B. M. van der Ende, L. Aarts, and A. Meijerink, "Near-Infrared Quantum Cutting for
Photovoltaics," Adv. Mater., 21, 3073 (2009).
[42] Y. Teng, J. Zhou, S. Ye, and J. Qiu, "Broadband Near-Infrared Quantum Cutting in
Eu2+ and Yb3+ Ions Co-doped CaAl2O4 Phosphor," J. Electrochem. Soc., 157, A1073
(2010).
[43] R.-J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma,
"Optical Properties of Eu2+ in α-SiAlON," J. Phys. Chem. B, 108, 12027 (2004).
[44] R.-J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, "Eu2+-doped
Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes," Appl. Phys. Lett., 84,
5404 (2004).
[45] X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and R. Li, "Luminescence and
Energy-Transfer Mechanism in SrSi2O2N2: Ce3+, Eu2+ Phosphors for White LEDs," J.
Electrochem. Soc., 157, J34 (2010).
[46] X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, and S. Zhang, "Photoluminescence
properties of Eu2+-activated CaSi2O2N2: Redshift and concentration quenching," J. Appl.
Phys., 106, 033103 (2009).
[47] V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, and A. Meijerink, "Color Point
Tuning for (Sr,Ca,Ba)Si2O2N2: Eu2+ for White Light LEDs," Chem.Mater., 21, 316 (2008).
[48] M. Zhang, J. Wang, Z. Zhang, Q. Zhang, and Q. Su, "A tunable green alkaline-earth
silicon-oxynitride solid solution (Ca1-xSrx)Si2O2N2: Eu2+ and its application in LED," Appl.
Phys. B: Lasers and Optics, 93, 829 (2008).
[49] Y. Q. Li, A. C. A. Delsing, G. de With, and H. T. Hintzen, "Luminescence Properties
of Eu2+-Activated Alkaline-Earth Silicon-Oxynitride MSi2O2-δN2+2/3δ (M = Ca, Sr, Ba): A
Promising Class of Novel LED Conversion Phosphors," Chem. Mater., 17, 3242 (2005).
[50] J. Moulder and J. Chastain, "Handbook of X-ray photoelectron spectroscopy."
Perkin-Elmer Eden Prairie, MN, (1992).
[51] F. Rebib, E. Tomasella, E Bêche, J. Cellier, and M. Jacquet, "FTIR and XPS
investigations of a-SiOxNy thin films structure," J.Phys.: Conf. Ser., 100, 082034 (2008).
[52] X. Rong-Jun and H. Naoto, "Silicon-based oxynitride and nitride phosphors for white
LEDs—A review," Sci. Technol. Adv. Mater., 8, 588 (2007).
[53] J. H. Ryu, Y.-G. Park, H. S. Won, S. H. Kim, H. Suzuki, J. M. Lee, C. Yoon, M.
Nazarov, D. Y. Noh, and B. Tsukerblat, "Luminescent Properties of Ca-α-SiAlON: Eu2+
Phosphors Synthesized by Gas-Pressured Sintering," J. Electrochem. Soc., 155, J99 (2008).
[54] Y. Gu, Q. Zhang, Y. Li, and H. Wang, "Nitridation from core-shell oxides for tunable
luminescence of BaSi2O2N2: Eu2+ LED phosphors," J.Mater. Chem., 20, 6050 (2010).
[55] T. Som and B. Karmakar, "Infrared-to-red upconversion luminescence in
samarium-doped antimony glasses," J. Lumin., 128, 1989 (2008).
[56] J. S. Kim, Y. H. Park, J. C. Choi, and H. L. Park, "Optical and Structural Properties of
Eu2+-doped (Sr1-xBax)2SiO4 phosphors," J. Electrochem. Soc., 152, H135 (2005).
[57] T.-W. Kuo, W.-R. Liu, and T.-M. Chen, "Emission color variation of (Ba,Sr)3BP3O12:
Eu2+ phosphors for white light LEDs," Opt. Express, 18, 1888 (2010).
[58] Y. Q. Li, G. de With, and H. T. Hintzen, "Luminescence Properties of Eu2+-Doped
MAl2-xSixO4-xNx (M=Ca, Sr, Ba) Conversion Phosphor for White LED Applications," J.
Electrochem. Soc., 153, G278 (2006).
[59] Y. Wang, X. Xu, L. Yin, and L. Hao, "High Photoluminescence of Si-N-Co-Doped
BaAl12O19: Mn2+ Green Phosphors," Electrochem. Solid-State Lett., 13, J119 (2010).
[60] N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M.
Mitomo, "Characterization and properties of green-emitting β-SiAlON: Eu2+ powder
phosphors for white light-emitting diodes," Appl. Phys. Lett., 86, 211905 (2005).
[61] T. Suehiro, N. Hirosaki, R.-J. Xie, and T. Sato, "Blue-emitting LaSi3N5:Ce3+ fine
powder phosphor for UV-converting white light-emitting diodes," Appl. Phys. Lett., 95,
051903 (2009).
[62] Z. Wu, J. Liu, M. Gong, and Q. Su, "Optimization and Temperature-Dependent
Luminescence of LiBaPO4: Eu2+ Phosphor for Near-UV Light-Emitting Diodes," J.
Electrochem. Soc., 156, H153 (2009).
[63] J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, "Temperature-dependent
emission spectra of M2SiO4: Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white
LEDs," Solid State Commun., 133, 445 (2005).
[64] http://www.greenrhinoenergy.com/solar/downloads/pv_electrical.xls.
[65] http://pvcdrom.pveducation.org/APPEND/Am1_5.htm.
[66] B.-G. Yun, Y. Miyamoto, and H. Yamamoto, "Luminescence Properties of
(Sr1-uBau)Si2O2N2: Eu2+, Yellow or Orange Phosphors for White LEDs, Synthesized with
(Sr1- uBau)2SiO4: Eu2+ as a Precursor," J. Electrochem. Soc., 154, J320 (2007).
[67] K. Y. Jung and J. H. Seo, "Preparation of Fine-Sized SrSi2O2-δN2+2/3δ: Eu2+ Phosphor
by Spray Pyrolysis and its Luminescent Characteristics," Electrochem. Solid-State Lett.,
11, J64 (2008).
[68] J. Rocherullé, M. Matecki, B. Baron, P. Verdier, and Y. Laurent, "A devitrification
study of Mg-Y-Si-Al-O-N glasses," J. Non-Cryst. Solids, 211, 222 (1997).
[69] R. Ramesh, E. Nestor, M. J. Pomeroy, and S. Hampshire, "Classical and Differential
Thermal Analysis Studies of the Glass-Ceramic Transformation in a YSiAlON Glass," J.
Am. Ceram. Soc., 81, 1285 (1998).
[70] A. Nag and T. R. N. Kutty, "The light induced valence change of europium in Sr2SiO4:
Eu involving transient crystal structure," J. Mater. Chem., 14, 1598 (2004).
[71] H.-D. Nguyen, I.-H. Yeo, and S.-i. Mho, "Identification of Two Luminescence Sites of
Sr2SiO4: Eu2+ and (Sr,Ba)2SiO4: Eu2+ Phosphors," ECS Transactions, 28, 167 (2010).
[72] X. J. Xu, C. S. Ray, and D. E. Day, "Nucleation and Crystallization of Na2O• 2CaO•
3SiO2 Glass by Differential Thermal Analysis," J. Am. Ceram. Soc., 74, 909 (1991).
[73] Y.-M. Sung and J. S. Park, "Sintering and crystallization of
(SrO•SiO2)-(SrO•Al2O3•2SiO2) glass-ceramics," J.Mater. Sci., 34, 5803 (1999).
[74] Y. C. Wu, S. Parola, O. Marty, M. Villanueva-Ibanez, and J. Mugnier, "Structural
characterizations and waveguiding properties of YAG thin films obtained by different
sol-gel processes," Opt. Mater., 27, 1471 (2005).
[75] M. I. Baraton, R. Marchand, and P. Quintard, "Preliminary study of some
“pyro”-silico-nitrides," J. Mol. Struct., 115, 91 (1984).
[76] D. W. Cooke, B. L. Bennett, K. J. McClellan, J. M. Roper, and M. T. Whittaker,
"Oscillator strengths, Huang-Rhys parameters, and vibrational quantum energies of
cerium-doped gadolinium oxyorthosilicate," J. Appl. Phys., 87, 7793 (2000).
[77] P. Dorenbos, "Energy of the first 4f7→ 4f65d transition of Eu2+ in inorganic
compounds," J. Lumin., 104, 239 (2003).
[78] A. A. Setlur, "Phosphors for LED-based Solid-State Lighting," Electrochemical
Society Interface 33 (2009).
[79] C. C. Lin and R.-S. Liu, "Advances in Phosphors for Light-emitting Diodes," J. Phys.
Chem. Lett., 2, 1268 (2011).
[80] Y. C. Lin, J. P. You, N. T. Tran, Y. He, and F. G. Shi, "Packaging of Phosphor Based
High Power White LEDs: Effects of Phosphor Concentration and Packaging
Configuration," J. Electron. Packaging, 133, 011009 (2011).
[81] P. F. Smet, A. B. Parmentier, and D. Poelman, "Selecting Conversion Phosphors for
White Light-Emitting Diodes," J. Electrochem. Soc., 158, R37 (2011).
[82] W.-C. Ke, C. C. Lin, R.-S. Liu, and M.-C. Kuo, "Energy Transfer and Significant
Improvement Moist Stability of BaMgAl10O17: Eu2+,Mn2+ as a Phosphor for White
Light-Emitting Diodes," J. Electrochem. Soc., 157, J307 (2010).
[83] J. R. Oh, S.-H. Cho, Y.-H. Lee, and Y. R. Do, "Lowering Color Temperature of
Y3Al5O12: Ce3+ White Light Emitting Diodes Using Reddish Light-Recycling Filter,"
Electrochem. Solid-State Lett., 13, J5 (2010).
[84] X.-W. Chen, Y. Zhang, S.-T. Li, Q.-R. Yan, S.-W. Zheng, M. He, and G.-H. Fan,
"Improving color rendering of Y3Al5O12: Ce3+ white light-emitting diodes based on
dual-blue-emitting active layers," Phys. Status Solidi (a), 208, 1972 (2011).
[85] Y. Gu, Q. Zhang, H. Wang, and Y. Li, "CaSi2O2N2: Eu nanofiber mat based on
electrospinning: facile synthesis, uniform arrangement, and application in white LEDs," J.
Mater. Chem., 21, 17790 (2011).
校內:2016-11-28公開