| 研究生: |
卓高賢 Cho, Kao-Hsien |
|---|---|
| 論文名稱: |
奈米尖端結構高性能鈀/氧化錫/鑽石薄膜(CAIS)二極體一氧化碳感測器的研製 Studies of the High Performance Pd–SnOx / i-diamond / p+ diamond (CAIS) Diode Carbon Monoxide Gas Sensor with Nano-tip Structure |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 尖端結構 、一氧化碳感測器 、鑽石薄膜 |
| 外文關鍵詞: | CAIS, diamond, Nano-tip |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑽石不僅具有最高的硬度、高飽和速度、較高的崩潰電壓、高能帶隙,比起傳統半導體(Si、SiC、GaAs)擁有較高的熱導率。此外,鑽石的能隙為5.47電子伏特,可以操作在較高的溫度。又鑽石的化學活性較低可以運用在惡劣的環境,並抵禦外界氣溫下降。本論文研究利用具有高沈積速率與能提供大量氫自由基特性的電場輔助熱鎢絲化學氣相低溫沈積法(Bias-assisted HWCVD, BAHWCVD),於P型(100)矽基板上使用甲烷(CH4)與氫氣成長具非晶結構的鑽石薄膜,並以此製作奈米尖端結構高性能鈀/氧化錫/鑽石薄膜(CAIS)二極體一氧化碳感測器。利用BAHWCVD可於較低溫沈積品質較佳的鑽石薄膜。首先利用KOH 及IPA混合溶液在(100)矽基板蝕刻成奈米尖端,然後由 BAHWCVD及Sputter 分別 成長i-diamond/ p+-diamond 及 SnOx 薄膜,最後再蒸鍍鈀電極(Pd)完成感測器。吾人利用Raman量測原子間的鍵結、XRD量測薄膜結晶、SEM觀察表面結構。此外,也研究不同厚度SnOx對於元件感測特性的影響,發現在薄膜厚度為50nm時最好。並成長不同形狀的鈀電極相比較,發現方型電極對於一氧化碳有較佳的反應。
經由實驗顯示,奈米尖端結構增加感測器與氣體更多的接觸面積,相對地提昇感測電流與靈敏度。較之沒有奈米尖端者感測電流與靈敏度分別增加75倍及1.5倍。又元件在200℃,偏壓+3V及1000ppm的CO / air的環境下感測電流及靈敏度分別為112mA及 72.3%,較之已發表者的4mA及33% 分別提高26.75倍及 2.2倍。
The Catalyst/ SnOx/ i-diamond/ p+-diamond p+-silicon (CAIS) diodes with a nano tip structure are prepared by a Bias-assisted Hot-wire chemical vapor deposition (BAHWCVD) system for carbon monoxide (CO) gas sensing applications. With the added DC bias, a better quality film can be deposited under a lower temperature. We use Raman, XRD, and SEM for bond structure measurement, examination of surface morphology, analyzing crystallinity, and investigation of carbon atomic concentration with significant sp3 bonding in the film, respectively. Furthermore, effects of various patterns Pd catalyst electrode and SnO2 thicknesses on the CO sensing ability are investigated, and find the device with 50nm thick SnOx and the square Pd electrode has the highest diode sensing current and thus the highest sensitivity.
Experimental results show that with and without the nano tip structure, the diode sensing current can be enhanced up to 75 times. Besides, under 200℃, 3V forward bias, and 1000ppm CO / air ambient, the developed CAIS diode has a sensing current of 112 mA and sensitivity of 72.3%, which are respectively 75 times and 1.5 times to a reported CAIS diode diamond CO sensor prepared by a PECVD on Si substrate.
[1]蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會, 第68期 1992.
[2]蔡嬪嬪 ,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會, 第150期六月1999.
[3]蔡嬪嬪 ,“氣體感測器市場發展近況”,工業材料, 88 期4月1994.
[4]Albert L. Love, “Carbon Monoxide in the Home Environment”, University Microfilms International, Michigan 1986.
[5]K. Wark, C. F. Warner and W. T. Davis, “Air pollution: its origin and control”, Addison-Wesley Pub. Co., Massachusetts 1998.
[6] Gilbert M. Masters, “Introduction to Environmental Engineering and Science”, Prentice Hall, New Jersey 1997.
[7] J. H Seinfeld, “Atmospheric Chemistry and Physics of Air Pollution”, Wiley, New York 1986.
[8]“勞工作業環境空氣中有害物容許濃度標準”,行政院勞工委員會 2003.
[9]W.P. Kang, J.L. Davidson, Y. Gurbuz and D.V. Kerns, Tempera- tare dependency and effect of series resistance on the electrical characteristics of a polycrytalline diamond metal-insulator -semiconductor diode, Z Appl. Phys. 78, pp.1101- 1107, 1995.
[10]M.L. Hartsell, H.A. Wynands and B.A. Fox, Current-voltage and capacitance-voltage characterization of MS, MIS and MOSFET structures on semiconducting diamond, SPIE Vol. 2151 Diamond- Fihn Semiconductors, pp.91-98, 1994.
[11]T. Maki, G.L. Hou, T.H. Kim, S. Shikama, Y. Sagakuchi and T. Kobayashi, Fabrication and characterization of diamond Schottky diode using polyerystalline films, 2nd Int. Conf. on Application of Diamond Flinty and Related Materials, Tokyo, 1993.
[12]A.J. Tessmer, L.S. Plane and D.L. Dreifus, High-temperature operation of polycrystalline diamond field effect transistors, IEEE Electron. Device Lett, 14,66-68, 1993.
[13]J.L. Davidson, Electronic and sensing properties of diamond, SPIE Vol. 2151 Diamond-Fihn Semiconductors, pp. 133-144, 1994.
[14]V. L. Rideout, “A Review of the Theory, Technology and Applications of Metal-Semiconductor Rectifiers,” Thin Solid Film, 48,261, 1978.
[15]S. M. Sze, “Physics of semiconductor devices”ch5, wiley, New York, 1980.
[16]Neamen, “Semiconductor physics and device”ch9, p336, McGraw-Hill, 1992.
[17]H.Windischmann and P.Mark,” A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor”, Journal of the electrochemical society Vol.126, No.4, pp.627-633, 1979.
[18]S. R. Morrison, “The Chemical Physics of Surfaces,2nd” , New York: Plenum Press, pp.251, 1990.
[19]N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, “Interactions of tin oxide surface with O2, H2O and H2”, Surface Science, Vol. 86, pp. 335-344, 1979.
[20]K. M. Sancier, “ESR evidence of CO oxidation by more than one oxygen species sorbed on ZnO”, Journal of Catalysis, Vol. 9, pp.331-335, 1967
[21]S. C. Chang, “Thin-film semiconductor NOx sensor”, IEEE Transactions on Electron Devices, Vol. ED-26, No. 12, pp.1875-1880 ,December 1979.
[22]Y. Gurbuz, W.P. Kang, J.L. Davidson, and D.V. Kerns, “A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode,” Sensors and Actuators B: Chemical, vol. 36, pp.303-307, Oct. 1996.
[23]S. R. Morrison, “The Chemical Physics of Surfaces,2nd” , New York: Plenum Press, pp. 251, 1990.
[24]P. Gonon, E. Gheeraert, A. Deneuville, and F. Fontaine “Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance” J. Appl. Phys., Vol. 78, No. 12, 15 December 1995.
[25] W Hellmich, G Muller, ChB Braunmuhl, T Doll, I Eisele. “Field-effectinduced gas sensitivity changes in metal oxides.” Sensors Actuators B, 43:132–9, 1997.
[26]K Galatsis, YX Li, W Wlodarski, E Comini, G Sherveglieri, C Cantalini. et al.”Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors.“ Sensors Actuators B, 83:276–80, 2002.
[27]J. Song, S.H. Pak, N. Hwang, and H.J. Kim, “Effect of negatively charged species on the growth behavior of silicon films in hot wire chemical vapor deposition,” Thin Solid Films, vol. 516, pp.5122-5126, Jun.2008.
[28]S. Lien, M. Tseng, C. Chao, K. Weng, H.H. Yu, and D. Wuu, “Tungsten filament effect on electronic properties of hot-wire CVD silicon films for heterojunction solar cell application,” Thin Solid Films, vol. 517, pp. 4720-4723, 2009.
[29]S. OKOLI, R. HAUBNER, and B. LUX, “INFLUENCE OF THE FILAMENT MATERIAL ON LOW-PRESSURE HOT-FILAMENT CVD DIAMOND DEPOSITION,” Le Journal de Physique IV, vol.02, pp.8, 1991.
[30]W.D. Kingery, H.K. Bowen, D.R.Uhlmann, and R. Frieser,“Introduction to Ceramics,” Journal of The Electrochemical Society, vol.124, pp.152C, Mar.1977.
[31]J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering: R , vol. 37, pp.129-281, 2002.
[32]M. Larijani, A. Navinrooz, and F. Le Normand, “The bias-assisted HF CVD nucleation of diamond: Investigations on the substrate temperature and the filaments location,” Thin Solid Films, vol. 501, pp. 206-210, Apr. 2006.
[33]M. Gaidi, B. Chenevier, and M. Labeau, “Electrical properties evolution under reducing gaseous mixtures (H2, H2S, CO) of SnO2 thin films doped with Pd/Pt aggregates and used as polluting gas sensors,” Sensors and Actuators B: Chemical, vol. 62, pp. 43-48, Jan. 2000.
[34]Y.M. Fung, W.Y. Cheung, I.H. Wilson, D. Chen, J.B. Xu, S.P. Wong, and R.W.M. Kwok, “Electron field emission characteristics of textured silicon surface,” Papers from the 13th international vacuum microelectronics conference, Guanghou (China): AVS, pp. 884-887, 2001.
[35] Nguyen Duc Hoa, Nguyen Van Quy, You Suk Cho, Dojin Kim “Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application” phys. stat. sol. (a) 204, No. 6, 1820–1824, 2007
校內:2015-08-09公開