| 研究生: |
李之卉 Li, Jhih-Hui |
|---|---|
| 論文名稱: |
使用單顆粒式感應耦合電漿質譜儀於偵測奈米污染物在工業廢水處理廠中的發生與去除 Characterizing the Occurrences and Removal of Nanoscale Pollutants in Industrial Wastewater Treatment Plants Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 單顆粒式感應耦合電漿質譜儀 、奈米顆粒 、工業廢水 |
| 外文關鍵詞: | spICP-MS, nanoparticles, pretreatment, industrial wastewater |
| 相關次數: | 點閱:73 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前奈米材料已被廣泛的添加於民生用品與工業產品之中,隨著奈米科技應用的發展,造成有大量的奈米物質可能於使用後被排放至廢水處理廠中進而進入到環境之中,急需了解奈米汙染物於環境中的濃度以進行奈米顆粒的環境風險評估。本研究中以50奈米金顆粒作為標準品測試單顆粒式感應耦合電漿質譜儀對奈米顆粒濃度的適用範圍,得知在濃度1,000到100,000顆/毫升可以測得準確的顆粒數;並以單顆粒式感應耦合電漿質譜儀調查了10種工業中較常使用的奈米顆粒如Ce、Cu、Sn、In、W、Zr、Al、Zn、Ti和Ag於台灣中部與南部四個不同工業廢水處理程序的廢水處理廠中的去除及趨勢,發現在不同工業排放的廢水中,所含的奈米顆粒比例有所不同,但是反映出工業本身所使用的材料。在廢水中,含量最多的元素為Al,進流水中含量皆大於109顆/毫升,而含量最少的元素為In,在部分的廢水中是低於偵測極限的。另外於不同工業廢水處理廠中可發現,若設有不同處理單元,則奈米顆粒去除率有差異。
Nanomaterials have been incorporated into a wide range of consumer and industrial products. With nanotechnology-based applications increasing rapidly, a large amount of nanomaterials is being discharged into the waste treatment systems before releasing into the receiving waters. To enable the environmental risk assessment of nanoscale pollutants, the information regarding the concentrations of nanoparticles across environmental compartments is urgently needed. In this work, first, we tested single-particle inductively coupled plasma-mass spectrometry (spICP-MS) detected limit with 50 nm Au nanoparticle, knowing that nanoparticle concentration have good recvoery in 1,000 – 100,000 #NP/mL. Second, we aimed to characterize 10 common nanoparticles (NPs) relevant to consumer usages including Ce, Cu, Sn,In,W, Zr Al, Zn, Ti, and Ag in industrial sewages and to compare their removal across the treatment processes of four industrial wastewater treatment plants (WWTPs) using distinct processes in southern and middle Taiwan using spICP-MS. The concentrations of the selected NPs measured in raw sewages have different nanoparticle proportion reflecting usage of industrial. In all sewages, Al as the most abundance with more than 109 #NP/mL in all influent wastewater and In as the least abundance with no nanoparticle in some influent wastewater. We found that different treatment units cause different removal.
(1) Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311 (5761), 622–627.
(2) Nanotechnology http://www.strategyr.com/MarketResearch/Nanotechnology_Market_Trends.asp (accessed Mar 19, 2018).
(3) Baun, A.; Hartmann, N. B.; Grieger, K.; Kusk, K. O. Ecotoxicity of Engineered Nanoparticles to Aquatic Invertebrates: A Brief Review and Recommendations for Future Toxicity Testing. Ecotoxicology 2008, 17 (5), 387–395.
(4) Scown, T. M.; Aerle, R. van; Tyler, C. R. Review: Do Engineered Nanoparticles Pose a Significant Threat to the Aquatic Environment? Crit. Rev. Toxicol. 2010, 40 (7), 653–670.
(5) Matranga, V.; Corsi, I. Toxic Effects of Engineered Nanoparticles in the Marine Environment: Model Organisms and Molecular Approaches. Mar. Environ. Res. 2012, 76, 32–40.
(6) Keller, A. A.; McFerran, S.; Lazareva, A.; Suh, S. Global Life Cycle Releases of Engineered Nanomaterials. J. Nanoparticle Res. 2013, 15 (6), 1692.
(7) Karn, B. Inside the Radar: Select Elements in Nanomaterials and Sustainable Nanotechnology. J. Environ. Monit. 2011, 13 (5), 1184–1189.
(8) Benn, T. M.; Westerhoff, P. Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics. Environ. Sci. Technol. 2008, 42 (11), 4133–4139.
(9) tax, * All products require an annual contract Prices do not include sales. Global semiconductor industry market size 2018 | Statistic https://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/ (accessed Mar 19, 2018).
(10) 去年台灣半導體產值僅年增0.5% 遠低於全球成長21.6%|自由財經 http://ec.ltn.com.tw/article/breakingnews/2341339 (accessed Jul 4, 2018).
(11) Vance, M. E.; Kuiken, T.; Vejerano, E. P.; McGinnis, S. P.; Hochella, M. F.; Rejeski, D.; Hull, M. S. Nanotechnology in the Real World: Redeveloping the Nanomaterial Consumer Products Inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780.
(12) Hendren, C. O.; Mesnard, X.; Dröge, J.; Wiesner, M. R. Estimating Production Data for Five Engineered Nanomaterials As a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45 (7), 2562–2569.
(13) Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. J. Nanoparticle Res. 2012, 14 (9), 1109.
(14) Rao, V. D. P.; Harsha, N.; Ram, N. S. R.; Geethika, V. N. Optimization of Cutting Parameters in CNC Turning of Stainless Steel 304 with TiAlN Nano Coated Carbide Cutting Tool. IOP Conf. Ser. Mater. Sci. Eng. 2018, 310 (1), 012109.
(15) Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of Metal and Metal Oxide Nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237–254.
(16) Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; V. Kovalenko, M.; Cadavid, D.; Cabot, A. Bottom-up Engineering of Thermoelectric Nanomaterials and Devices from Solution-Processed Nanoparticle Building Blocks. Chem. Soc. Rev. 2017, 46 (12), 3510–3528.
(17) Yin, Y.; Tan, Z.; Hu, L.; Yu, S.; Liu, J.; Jiang, G. Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chem. Rev. 2017, 117 (5), 4462–4487.
(18) J. Stark, W.; R. Stoessel, P.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44 (16), 5793–5805.
(19) Ramanathan, E.; Balasubramanian, S. Comparative Study on Polyester Epoxy Powder Coat and Amide Cured Epoxy Liquid Paint over Nano-Zirconia Treated Mild Steel. Prog. Org. Coat. 2016, 93, 68–76.
(20) Steinfeldt, M.; Gleich, A.; Petschow, U.; Haum, R. Nanotechnologies, Hazards and Resource Efficiency: A Three-Tiered Approach to Assessing the Implications of Nanotechnology and Influencing Its Development; Springer Science & Business Media, 2007.
(21) Chen, H.-S.; Yang, P.; Khan, Z. H.; Wu, J. M.; Li, G.; Kamali, A. R. Quantum Dots and Nanoparticles in Light Emitting Diodes, Displays, and Optoelectronic Devices https://www.hindawi.com/journals/jnm/2015/371679/ (accessed Jul 19, 2018).
(22) Yu, Y.; Wen, L.; Song, S.; Chen, Q. Transmissive/Reflective Structural Color Filters: Theory and Applications. J. Nanomater. 2014, 2014, 1–17.
(23) 量子點LED簡介:材料世界網 http://www.materialsnet.com.tw/DocView.aspx?id=8247 (accessed Jul 10, 2018).
(24) Meakin, J. D. PHOTOVOLTAIC CONVERSION.
(25) Zunger, A. Semiconductor Quantum Dots. MRS Bull. 1998, 23 (2), 15–17.
(26) Metal Cutting Tools with Nano-Structured Coatings; 2012.
(27) 工業★WS2潤滑添加劑-WS2奈米球極壓潤滑添加劑 - ★產品介紹 http://www.power-micro.com.tw/mobile/edcontent.php?lang=tw&tb=11&cid=35&id=146 (accessed Jul 10, 2018).
(28) Narasimha, M.; Kumar, R. R.; Kassie, A. Performance of Coated Carbide Tools. 8.
(29) Djurišić, A. B.; Leung, Y. H.; Ng, A. M. C.; Xu, X. Y.; Lee, P. K. H.; Degger, N.; Wu, R. S. S. Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts. Small 2015, 11 (1), 26–44.
(30) Griffitt, R. J.; Luo, J.; Gao, J.; Bonzongo, J.-C.; Barber, D. S. Effects of Particle Composition and Species on Toxicity of Metallic Nanomaterials in Aquatic Organisms. Environ. Toxicol. Chem. 2008, 27 (9), 1972–1978.
(31) Mueller, N. C.; Nowack, B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008, 42 (12), 4447–4453.
(32) Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. Possibilities and Limitations of Modeling Environmental Exposure to Engineered Nanomaterials by Probabilistic Material Flow Analysis. Environ. Toxicol. Chem. 2010, 29 (5), 1036–1048.
(33) Gottschalk, F.; Scholz, R. W.; Nowack, B. Probabilistic Material Flow Modeling for Assessing the Environmental Exposure to Compounds: Methodology and an Application to Engineered Nano-TiO2 Particles. Environ. Model. Softw. 2010, 25 (3), 320–332.
(34) Kaegi, R.; Ulrich, A.; Sinnet, B.; Vonbank, R.; Wichser, A.; Zuleeg, S.; Simmler, H.; Brunner, S.; Vonmont, H.; Burkhardt, M.; et al. Synthetic TiO2 Nanoparticle Emission from Exterior Facades into the Aquatic Environment. Environ. Pollut. Barking Essex 1987 2008, 156 (2), 233–239.
(35) Hsu, L.-Y.; Chein, H.-M. Evaluation of Nanoparticle Emission for TiO2 Nanopowder Coating Materials. J. Nanoparticle Res. 2007, 9 (1), 157–163.
(36) Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ. Sci. Technol. 2014, 48 (10), 5415–5422.
(37) Kiser, M. A.; Westerhoff, P.; Benn, T.; Wang, Y.; Pérez-Rivera, J.; Hristovski, K. Titanium Nanomaterial Removal and Release from Wastewater Treatment Plants. Environ. Sci. Technol. 2009, 43 (17), 6757–6763.
(38) Chao, J.; Liu, J.; Yu, S.; Feng, Y.; Tan, Z.; Liu, R.; Yin, Y. Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation. Anal. Chem. 2011, 83 (17), 6875–6882.
(39) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma–Mass Spectrometry. Environ. Toxicol. Chem. 2012, 31 (1), 115–121.
(40) Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. Size Discrimination and Detection Capabilities of Single-Particle ICPMS for Environmental Analysis of Silver Nanoparticles. Anal. Chem. 2012, 84 (9), 3965–3972.
(41) Li, L.; Hartmann, G.; Döblinger, M.; Schuster, M. Quantification of Nanoscale Silver Particles Removal and Release from Municipal Wastewater Treatment Plants in Germany. Environ. Sci. Technol. 2013, 47 (13), 7317–7323.
(42) Hadioui, M.; Merdzan, V.; Wilkinson, K. J. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environ. Sci. Technol. 2015, 49 (10), 6141–6148.
(43) Roth, G. A.; Neu-Baker, N. M.; Brenner, S. A. SEM Analysis of Particle Size during Conventional Treatment of CMP Process Wastewater. Sci. Total Environ. 2015, 508, 1–6.
(44) Li, L.; Stoiber, M.; Wimmer, A.; Xu, Z.; Lindenblatt, C.; Helmreich, B.; Schuster, M. To What Extent Can Full-Scale Wastewater Treatment Plant Effluent Influence the Occurrence of Silver-Based Nanoparticles in Surface Waters? Environ. Sci. Technol. 2016, 50 (12), 6327–6333.
(45) Yang, Y.; Long, C.-L.; Li, H.-P.; Wang, Q.; Yang, Z.-G. Analysis of Silver and Gold Nanoparticles in Environmental Water Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2016, 563–564, 996–1007.
(46) Liu, Y.; He, M.; Chen, B.; Hu, B. Ultra-Trace Determination of Gold Nanoparticles in Environmental Water by Surfactant Assisted Dispersive Liquid Liquid Microextraction Coupled with Electrothermal Vaporization-Inductively Coupled Plasma-Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2016, 122, 94–102.
(47) Peters, R. J. B.; van Bemmel, G.; Milani, N. B. L.; den Hertog, G. C. T.; Undas, A. K.; van der Lee, M.; Bouwmeester, H. Detection of Nanoparticles in Dutch Surface Waters. Sci. Total Environ. 2018, 621, 210–218.
(48) Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Detection of Zinc Oxide and Cerium Dioxide Nanoparticles during Drinking Water Treatment by Rapid Single Particle ICP-MS Methods. Anal. Bioanal. Chem. 2016, 408 (19), 5137–5145.
(49) B. Reed, R.; P. Martin, D.; J. Bednar, A.; D. Montaño, M.; Westerhoff, P.; F. Ranville, J. Multi-Day Diurnal Measurements of Ti-Containing Nanoparticle and Organic Sunscreen Chemical Release during Recreational Use of a Natural Surface Water. Environ. Sci. Nano 2017, 4 (1), 69–77.
(50) Speed, D.; Westerhoff, P.; Sierra-Alvarez, R.; Draper, R.; Pantano, P.; Aravamudhan, S.; Loon Chen, K.; Hristovski, K.; Herckes, P.; Bi, X.; et al. Physical, Chemical, and in Vitro Toxicological Characterization of Nanoparticles in Chemical Mechanical Planarization Suspensions Used in the Semiconductor Industry: Towards Environmental Health and Safety Assessments. Environ. Sci. Nano 2015, 2 (3), 227–244.
(51) Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Single Particle ICP-MS Characterization of Titanium Dioxide, Silver, and Gold Nanoparticles during Drinking Water Treatment. Chemosphere 2016, 144, 148–153.
(52) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369.
(53) Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma–Mass Spectrometry. Environ. Toxicol. Chem. 2012, 31 (1), 115–121.
(54) Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Gray, E. P.; Higgins, C. P.; Ranville, J. F. Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environ. Sci. Technol. 2012, 46 (22), 12272–12280.
(55) Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300.
(56) Montaño, M. D.; Badiei, H. R.; Bazargan, S.; Ranville, J. F. Improvements in the Detection and Characterization of Engineered Nanoparticles Using SpICP-MS with Microsecond Dwell Times. Environ. Sci. Nano 2014, 1 (4), 338–346.
(57) Hadioui, M.; Peyrot, C.; Wilkinson, K. J. Improvements to Single Particle ICPMS by the Online Coupling of Ion Exchange Resins. Anal. Chem. 2014, 86 (10), 4668–4674.
(58) Tsai, J.-C.; Kumar, M.; Chen, S.-Y.; Lin, J.-G. Nano-Bubble Flotation Technology with Coagulation Process for the Cost-Effective Treatment of Chemical Mechanical Polishing Wastewater. Sep. Purif. Technol. 2007, 58 (1), 61–67.