簡易檢索 / 詳目顯示

研究生: 陳建良
Chen, Chien-Liang
論文名稱: 變頻半橋感應式磁奈米粒熱療加熱系統
A Frequency-Conversion Half-Bridge Induction Type Heating System for Magnetic Nanoparticle Thermotherapy
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 熱療磁奈米粒半橋諧振有限元素法
外文關鍵詞: Thermotherapy, Magnetic nanoparticle, Half-bridge resonance, Finite-Element Method
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用微小磁粒在交變磁場下做熱療,大約是在1950年後期才開始的醫學研究。近十幾年來因磁粒的製程進步到奈米化,因此現今相關的醫學研究是利用磁奈米粒到人身體內做所謂的腫瘤熱療。其主要理念是使用磁奈米粒做為載體,包覆脂質與藥物的磁奈米粒會對特定癌細胞產生依附作用,再以外加的電磁加熱系統輻射出交變磁場,使磁奈米粒吸收磁能後轉成功率熱損而提升溫度,該熱能將使附載在磁奈米粒上的藥物發揮其療效在癌細胞上,並且利用高溫來達到抑制癌細胞的成長。至目前為止的磁奈米粒熱療研究都使用單一或者少數頻率與磁場大小來進行實驗,而這些相關之研究並沒有一個明確的最佳加熱模式,而加熱效率問題對於磁奈米粒熱療實驗是十分重要的。本研究的重點在於磁奈米粒加熱系統的設計,並實際針對未包覆藥物的磁奈米粒做磁場加溫實驗。本研究完成一個可輸入操作頻率的電路,利用半橋諧振電路來產生交流電流,經由鐵心上的感應線圈形成一磁路,產生磁場來對磁奈米粒加熱,利用變頻電路改變半橋諧振電路的諧振頻率,探討磁奈米粒在不同的加熱磁場頻率下之加熱特性。最後再利用有限元素法和電路模擬軟體進行串聯諧振電路模擬並與量測結果做比對,並且探討相同直徑磁奈米粒在不同操作頻率下的加熱效率關係。

    The Bio-research with small particles in AC magnetic fields was started in the late 1950s. Since the process of magnetic particles has progressed to nanoscale in the last decade, the related researches are doing tumor thermotherapy in human body with magnetic nanoparticles. The main idea is to use the magnetic nanoparticles which are packaged with lipid and drug to attach to specific cancer cells. The temperature of magnetic particles is risen by absorbing magnetic energy from external AC magnetic fields. The heat can make the good curative effects to cancer cells from drugs-bearing magnetic particles. And the high temperature can inhibit the development of cancer cells. Up to present, the thermotherapy researches of magnetic particles almost experiment with single or few frequencies of magnetic filed. So the focus of our research is to design the heating system to heat the magnetic particles. We design a half-bridge resonance circuit which can be set with different operation frequencies to generate the AC magnetic filed. The heating system can also control the amplitude of the generated magnetic field. Finally, we use the Finite-Element Method and circuit simulation software to simulate the half-bridge resonance circuit and compare the results with the practical heating system. The heating efficiency of nanoparticle under different heating frequencies is also studied.

    摘要 ............................................i Abstract .......................................ii 誌謝 ..........................................iii 目錄 ...........................................iv 表目錄 ........................................vii 圖目錄 .......................................viii 第一章 緒論 .....................................1 1.1 研究背景與動機 ............................1 1.2 相關文獻回顧 ..............................3 1.3 研究貢獻與目的 ............................4 1.4 全文概述 ..................................5 第二章 磁奈米粒的物理特性........................6 2.1磁性來源 ...................................6 2.1.1磁矩的產生 .............................6 2.1.2磁滯曲線 ...............................7 2.2磁區與粒徑的關係 ...........................9 2.2.1單磁區下的情形 ........................10 2.2.2多磁區下的情形 ........................12 2.3磁粒子功率損耗 ............................14 2.3.1氧化鐵功率損耗與粒徑與頻率關係.........15 2.3.2磁粒子功率損耗與頻率的關係 ............16 2.3.3理論上計算10 nm氧化鐵的最佳加溫頻率 ...17 第三章 系統設計 ................................18 3.1 前言 .....................................18 3.2 系統方塊圖 ...............................19 3.3 半橋串聯諧振式電路架構原理 ...............20 3.3.1半橋串聯諧振式電路架構 ................20 3.3.2半橋串聯諧振式電路操作原理 ............21 3.3.3半橋串聯諧振式換流器之元件設計 ........23 3.4 線圈設計理念與實現 .......................26 3.4.1電磁線圈磁路設計和線圈繞製 ............26 3.4.2 電磁線圈模擬電路 .....................30 3.5變頻控制系統...............................32 3.5.1切換頻率控制電路 ......................32 3.5.2半橋串聯諧振式電路之切換模式 ..........33 3.5.3 諧振頻率變頻原理和設計 ...............37 第四章 結果與討論 ..............................39 4.1實際電路 ..................................39 4.2模擬設計結果 ..............................42 4.2.1串聯諧振模擬電路 ......................42 4.2.2 諧振電路模擬結果 .....................43 4.3波形圖 ....................................47 4.3.1 實際電路中,操作頻率fs輸出波形 .......47 4.3.2 實際電路的輸出波形 ...................48 4.3.3 三個不同電容的輸出統計表 .............53 4.4加熱實驗 ..................................56 4.4.1 實驗A: 諧振電容(Cs)=5.5 nF ...........56 4.4.2 實驗B: 諧振電容(Cs) =12 nF ...........57 4.4.3 實驗C: 諧振電容(Cs) =18 nF ...........57 4.4.4 不同頻率下實驗加熱比較結果 ...........58 4.5加熱系統模擬與實驗結果討論.................59 4.6加熱實驗部份結果討論.......................59 第五章 結論和未來展望...........................61 5.1 結論 .....................................61 5.2 未來展望 .................................62 參考文獻........................................64 自述 ...........................................70

    [1] A. Jordan, R. Scholz, P. Wust, H. Fahling, R. Felix, ” Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles”, Journal of Magnetism and Magnetic Materials , Vol. 201, pp. 413-419, 1999.
    [2] A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W.g Lanksch, R. Felix, ” Presentation of a new magnetic fleld therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia”, Journal of Magnetism and Magnetic Materials, Vol. 225, pp. 118-126, 2001.
    [3] F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, T. Kobayashi, "Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma," BioMagnetic Research and Technology, pp. 2-3, 2004.
    [4] I. Hilgera, R. Hergtb, W. A. Kaiser, “Towards breast cancer treatment by magnetic heating,” Journal of Magnetism and Magnetic Materials, Vol. 293, pp. 314-319, 2005.
    [5] A. Ito, M. Shinkai, H. Honda, T. Kobayashi, “Medical application of functionalized magnetic nanoparticles,” Journal of Bioscience and Bioengineering Vol. 100(1), pp. 1-11, 2005.
    [6] H. Kaneko, K. Igarashi, K. Kataoka, M. Miura, "Heat shock induces phosphorylation of histone H2AX in mammalian cells", Biochemical and Biophysical Research Communications, Vol. 328(4), pp. 1101-1106, 2005.
    [7] A. Wilfried, H. Nowak, "Magnetism in Medicine," Wiley, 1998.
    [8] J. N. Weinstein,R.L. Magin, M. B. Yatvin, D. S. Zaharko,”Liposomes and local hyperthermia: Selective delivery of methotrexate to heated tumors.”, Science, Vol. 204,pp. 188-191, 1979.
    [9] M. Shinkai, M. Suzuki, S. Iijima, T. Kobayashi. , “Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia.”, Biotechnol. Appl. Biochem., Vol.21, pp.125-137, 1994.
    [10] A. Ito, H. Honda, T. Kobayashi, “Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of ‘‘heat-controlled necrosis’’ with heat shock protein expression,” Cancer Immunol Immunother, Vol.55, pp.320-328, 2006.
    [11] 江宜時,”發展熱敏感微脂體的化療法結合熱療法在癌症治療上的應用”,國立臺灣大學醫學院生化學研究所碩士論文,民國八十七年。
    [12] 趙良曉、王曼肇, “鐵磁性熱種子之病熱治療”, 國立陽明大學醫學工程研究所, 民國七十九年。
    [13] 劉讚衛、鐘炳濤、王曼肇, “自律式鎳合金種子加熱之癌病熱治療腫瘤模型溫度分佈” ,中原大學應用物理研究所, 民國七十八年。
    [14] N. Umeda, M. Takahashi, "Numerical analysis for heat transfer enhancement of a lithium flow under a transverse magnetic field," Fusion Engineering and Design, Vol. 51-52, pp. 899-907, 2000.
    [15] Y. K. Sun, M. Ma, Y. Zhang, N. Gu, "Synthesis of nanometer-size maghemite particles from magnetite," Colloids and Surfaces A: Physicochem. Eng. Aspects 245, pp. 15-19, 2004.
    [16] L. Vayssie`res, C. Chane´ac, E. Tronc, .J. P. Jolivet, "Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation:An Example of Thermodynamic Stability of Nanometric Oxide Particles," Journal of Colloid and Interface Science ,Vol. 205, pp. 205-212, 1998.
    [17] M. Ma, Y. Wu, J. Zhou, Y. K. Sun, Yu Zhang, N. Gu, "Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field," Journal of Magnetism and Magnetic Materials, Vol. 268, pp. 33-39, 2004.
    [18] M. Babincova, P. Cicmanec, V. Altanerova, C. Altaner, P. Babinec, "AC-magnetic field controlled drug release from magnetoliposomes:design of a method for site-specific chemotherapy," Bioelectrochemistry 55, pp. 17-19, 2002.
    [19] R. Hiergeist, W. AndraK, N. Buske, R. Hergt, I. Hilger, U. Richter,W. Kaiser, "Application of magnetite ferrofluids for hyperthermia," Journal of Magnetism and Magnetic Materials ,Vol. 201, pp. 420-422, 1999.
    [20] R. Hergt, R. Hiergeist, M. Zeisberger, G. Glöckl, W. Weitschies, L. P. Ramirez, I. Hilger, W. A. Kaiser, "Enhancement of AC-losses of magnetic nanoparticles for heating applications," Journal of Magnetism and Magnetic Materials,Vol.280, pp. 358-368, 2004.
    [21] D. H. Kim, S. H. Lee , K. N. Kim, K. M. Kim, I. B. Shim, Y. K. Lee , "Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application," Journal of Magnetism and Magnetic Materials Vol. 293(1), pp. 320-327, 2005.
    [22] X. Wanga, H. Gub, Z. Yangc, "The heating effect of magnetic fluids in an alternating magnetic field," Journal of Magnetism and Magnetic Materials , Vol.293, pp. 334-340, 2005.
    [23] R. Hergta, R. Hiergeista, I. Hilgerb, W.A. Kaiserb, Y. Lapatnikovc, S. Margelc, U. Richterd, "Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia," Journal of Magnetism and Magnetic Materials , Vol.270, pp. 345-357, 2004.
    [24] R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott, C. B. Taylor, "Selective inductive heating of lymph nodes," Ann. Surg. ,Vol.146, pp. 596-606, 1957.
    [25] V. S Kalambur, B. Han, B. E. Hammer, T. W. Shield, J. C. Bischof, "In vitro characterization of movement heating and visualization of magnetic nanoparticles for biomedical applications," Nanotechnology 16, pp. 1221-1233, 2005.
    [26] M. Shinkai, M. Yanasea, M. Suzukia, H. Hondaa, T. Wakabayashib, J. Yoshidab, T. Kobayashia, "Intracellular hyperthermia for cancer using magnetite cationic liposomes ," Journal of Magnetism and Magnetic Materials, Vo.194, pp. 176-184,1999.
    [27] A. A. Kuznetsov, O. A. Shlyakhtin, N. A. Brusentsov, O. A. Kuznetsov. "SMART” Mediators for Self-Controlled Inductive Heating," European Cells and Materials Vol. 3( 2), pp. 75-77, 2002.
    [28] R. Hergt, W. Andra, C. G. d'Ambly, I. Hilger, W. A. Kaiser, U. Richter, H. G. Schmidt, “Physical Limits of Hyperthermia Using Magnetite Fine Particles.”, IEEE Transactions on magnetics, Vol.34(5), pp.3745-3754, 1998.
    [29] K. W. E. Cheng, W. S. Lee., C. Y. Tang, L. C. Chan, “Dynamic modelling of magnetic materials for high frequency applications.”, Journal of Magnetism and Magnetic Materials,Vol. 139, pp. 578-584, 2003.
    [30] R.E.Rosensweig, “Heating magnetic fluid with alternating magnetic field”, Journal of Magnetism and Magnetic Materials, Vol. 252, pp. 370-374, 2002.
    [31] 張煦、李學養,”磁性物理學”, 聯經出版社,民國七十一年。
    [32] B. D. Cullity, “Introduction to Magnetic Materials”, ADDISION-WESLEY Publishing Company, 1972.
    [33] 黃忠良,”磁性流體理論應用”,復漢出版社,民國七十八年。
    [34] 莊萬發,“超微粒子理論應用”,復漢出版社,民國八十七年。
    [35] R. B. Bird, W. D. Stewart, E. N. Lightfoot, "Transport Phenomena 2nd ,“ New York: Wiley, 2002.
    [36] W. F. Brown,” Thermal Fluctuations of a Single-Domain Particle” , Physical Review ,Appl phys 34, Vol. 130, Num 5, pp.1319, Jun 1963.
    [37] S. Reddy, L. R. Moore, L. Sun, M. Zborowski, J. J. Chalmers, “Determination of the magnetic susceptibility of labeled particles by video imaging” ,Chemical Engineering Science, Vol. 51(6) , pp. 947-956, Mar 1996.
    [38] P. C. Fannin, S. W. Charles, C. M. Oireachtaigh, S. Odenbach, “Investigation of possible hysteresis effects arising from frequency and field dependent complex susceptibility measurements of magnetic fluids” , Journal of Magnetism and Magnetic Materials, Vol. 302(1), pp.1-6, Dec 5 2003.
    [39] D. Weller, A. Moser, “Thermal Effect Limits in Ultrahigh Density Magnetic Recording” ,IEEE Trans on Magn, Vol.35(6), pp.4423–4439, Nov 1999.
    [40] L. Neel, “ Thermoremanent Magnetization of Fine Powders” ,Phys. Rev, Vol. 25(1), pp.293-295, JAN 1953.
    [41] L. Neel, “Some New Results on Antiferromagnetism and Ferromagnetism” , Phys. Rev, Vol. 25(1), pp.58-63, JAN 1953.
    [42] 王子瑜、曹恒光,“布朗運動、朗之萬方程式、與布朗動力學”,物理雙月刊,二十七卷三期,2005年6月。
    [43] D. Halliday, R. Resnick, J. Walker, “Fundamentals of Physics 6th”, Wiley, 2001.
    [44] 吳石順,“高科技之材料檢測 ”,全華圖書,民國八十一年。
    [45] 蕭正昌,”應用於腫瘤熱療之奈米磁粒加熱系統研製”,國立成功大學電機研究所,民國九十五年。
    [46] R. Müller, R. Hergt, M. Zeisberger , W. Gawalek , "Preparation of magnetic nanoparticles with large specific loss power for heating applications," Journal of Magnetism and Magnetic Materials, Volume 289, pp. 13-16, March, 2005.
    [47] M. Ma, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field” ,Journal of Magnetism and Magnetic Materials, Vol. 268(1), pp.33–39, Jan 2004..
    [48] R. Kotiz, P. C. Fannia, J. Trahms, “Time domain study of Brownian and N6el relaxation in ferrofluids” , Magn. Mater, Vol.149, pp.42-46, 1995.
    [49] 宋自恆、林慶仁,”剖析切換式電源供應器的原理及常用元件規格”,新電子科技雜誌第196期,2002年7月。
    [50] M. K. Kazimierczuk, D. Czarkowski, "Resonant power converter", John Wiley & Sons, Inc, 1995.
    [51] W. Chen, P. Xu, F.C. Lee,” The optimization of asymmetric half bridge converter” IEEE APEC’ vol.2, pp.703-707, 2001.
    [52] R. L. Steigerwald, "A comparison of half-bridge resonant converter topologies," IEEE Trans. On Power Electronic, Vol.3(2), pp.174-182, April 1988.
    [53] 楊嶽儒、陳秋麟、林昌賢,“自激串振式半橋型電子式安定器電路分析”,電力電子技術雙月刊,第24期,民國83年12月。
    [54] 莊英俊,"高功因螢光燈電子安定器之研製", 國立中山大學電機工程研究所博士論文,民國八十六年。
    [55] 陳弼先,"無線透膚電能傳輸系統之研究", 國立成功大學電機工程學系碩士論文,民國八十七年。
    [56] 陳明坤、戴政祺,“半橋式串聯共振變流器於磁性奈米粒子熱療系統之應用”,2006生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,台灣大學,台北, (Dec. 15-16, 2006)。
    [57] 蕭正昌、戴政祺、王威智、楊明長,“應用於腫瘤熱療之奈米磁粒加熱系統研製”,2006生物醫學工程科技研討會暨國科會醫學工程學門成果發表會,台灣大學,台北,(Dec. 15-16, 2006)。

    下載圖示 校內:2012-07-12公開
    校外:2012-07-12公開
    QR CODE