| 研究生: |
李冠廷 Lee, Kuan-Ting |
|---|---|
| 論文名稱: |
以OpenFOAM模擬二相流與彈性結構物之交互作用 Simulation of Two-phase Flow Structure Interaction Using OpenFOAM |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 流固交互作用 、OpenFOAM 、分區法 、強耦合 |
| 外文關鍵詞: | FSI, OpenFOAM, partitioned method, strongly coupled |
| 相關次數: | 點閱:127 下載:38 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
流體與結構物之交互作用屬於一多領域物理問題,又稱為FSI問題,當結構物為一彈性體時,更增加了該問題之難度。本研究採用分區法求解流固耦合問題,分別求解流場、結構物,再透過流固交界面耦合兩求解器,流體採用之控制方程式為Navier-Stokes方程式,並以流體體積法(VOF)獲得自由液面;考慮結構物之大變形因此採用StVenant-Kirchhoff本構關係式。
所使用之數值軟體為OpenFOAM,該軟體基於有限體積架構,並採用C++語言編成。使用之求解器為solids4Foam,該求解器融合OpenFOAM流場與固體求解器,因此能處理更廣泛的流固耦合問題。
本研究首先透過孤立波流經剛性浸沒式平板以測試本模式之造波、吸波能力,分析自由液面、速度場、渦流強度以及紊流強度,與前人比較後獲得不錯的結果,此外藉由潰壩波衝擊彈性平板模擬,以確認本模式求解彈性體運動之能力。
最後進一步延伸模擬孤立波通過彈性浸沒式平板,比較不同尺寸,分析自由液面、渦度場之變化,發現當平板寬高比較小時,結構物之彈性效應較容易呈現,而由於孤立波經過平板時,彈性平板變形方向與孤立波行徑方向一致,因此相對速度較低,而細長外觀平板由於容易變形,因此消波能力較差,故自由液面下降幅度較少。
Numerous studies focus on the interaction between fluid and rigid structure for a long time but the fluid interaction with flexible structure also attract much attention. In present study, the process of water wave interaction with submerged elastic plate is simulated by an open-source software—OpenFOAM, where a wave generation toolbox waves2Foam is employed to generate and absorb wave. The incompressible fluid is described by Navier-Stokes equation, the motion of elastic body is modeled by StVenant-Kirchhoff constitutive law and the free surface elevation is tracked using VOF method. There are two experiments to validate the numerical model. In the first one the solitary wave pass through the submerged rigid plate is considered to check the ability of wave generation and absorption. The other is a dam-break flow impacting on an elastic plate. Finally, considering the solitary wave interaction with submerged elastic plate, and analyze the evolution of free surface, velocity fields and the coefficients of reflection and transmission.
[1] Antoci, C., Gallati, M., & Sibilla, S. (2007). Numerical simulation of fluid–structure interaction by SPH. Computers & structures, 85(11-14), 879-890.
[2] Calderer, R., & Masud, A. (2010). A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Computational Mechanics, 46(1), 185-197.
[3] Cardiff, P., Karač, A., De Jaeger, P., Jasak, H., Nagy, J., Ivanković, A., & Tuković, Ž. (2018). An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. arXiv preprint arXiv:1808.10736.
[4] Degroote, J., Haelterman, R., Annerel, S., Bruggeman, P., & Vierendeels, J. (2010). Performance of partitioned procedures in fluid–structure interaction. Computers & structures, 88(7-8), 446-457.
[5] Degroote, J., Souto-Iglesias, A., Van Paepegem, W., Annerel, S., Bruggeman, P., & Vierendeels, J. (2010). Partitioned simulation of the interaction between an elastic structure and free surface flow. Computer methods in applied mechanics and engineering, 199(33-36), 2085-2098.
[6] Donea, J., Huerta, A., Ponthot, J. P., & Rodríguez‐Ferran, A. (2017). Arbitrary L agrangian–E ulerian Methods. Encyclopedia of Computational Mechanics Second Edition, 1-23.
[7] Fernández, M. A. (2011). Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. SeMA Journal, 55(1), 59-108.
[8] Ferrer, P. M., Causon, D., Qian, L., Mingham, C., & Ma, Z. (2016). A multi-region coupling scheme for compressible and incompressible flow solvers for two-phase flow in a numerical wave tank. Computers & Fluids, 125, 116-129.
[9] Habchi, C., Russeil, S., Bougeard, D., Harion, J.-L., Lemenand, T., Ghanem, A., . . . Peerhossaini, H. (2013). Partitioned solver for strongly coupled fluid–structure interaction. Computers & Fluids, 71, 306-319.
[10] Huang, Z., Yao, Y., Sim, S. Y., & Yao, Y. (2011). Interaction of solitary waves with emergent, rigid vegetation. Ocean Engineering, 38(10), 1080-1088.
[11] Idelsohn, S., Marti, J., Souto-Iglesias, A., & Onate, E. (2008). Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Computational Mechanics, 43(1), 125-132.
[12] Idelsohn, S. R., Marti, J., Limache, A., & Oñate, E. (2008). Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Computer methods in applied mechanics and engineering, 197(19-20), 1762-1776.
[13] Jacobsen, N. G., Fuhrman, D. R., & Fredsøe, J. (2012). A wave generation toolbox for the open‐source CFD library: OpenFoam®. International Journal for numerical methods in fluids, 70(9), 1073-1088.
[14] Jasak, H. (1996). Error analysis and estimation for the finite volume method with applications to fluid flows.
[15] Küttler, U., & Wall, W. A. (2008). Fixed-point fluid–structure interaction solvers with dynamic relaxation. Computational Mechanics, 43(1), 61-72.
[16] Kassiotis, C., Ibrahimbegovic, A., Niekamp, R., & Matthies, H. G. (2011). Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Computational Mechanics, 47(3), 305-323.
[17] Liao, K., & Hu, C. (2013). A coupled FDM–FEM method for free surface flow interaction with thin elastic plate. Journal of marine science and technology, 18(1), 1-11.
[18] Liao, K., Hu, C., & Sueyoshi, M. (2015). Free surface flow impacting on an elastic structure: Experiment versus numerical simulation. Applied Ocean Research, 50, 192-208.
[19] Ma, Z., Qian, L., Martinez-Ferrer, P., Causon, D., Mingham, C., & Bai, W. (2018). An overset mesh based multiphase flow solver for water entry problems. Computers & Fluids, 172, 689-705.
[20] Mayer, S., Garapon, A., & Sørensen, L. S. (1998). A fractional step method for unsteady free‐surface flow with applications to non‐linear wave dynamics. International Journal for numerical methods in fluids, 28(2), 293-315.
[21] Meduri, S., Cremonesi, M., Perego, U., Bettinotti, O., Kurkchubasche, A., & Oancea, V. (2018). A partitioned fully explicit Lagrangian finite element method for highly nonlinear fluid‐structure interaction problems. International Journal for Numerical Methods in Engineering, 113(1), 43-64.
[22] Michler, C., Hulshoff, S., Van Brummelen, E., & De Borst, R. (2004). A monolithic approach to fluid–structure interaction. Computers & Fluids, 33(5-6), 839-848.
[23] Rusche, H. (2003). Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Imperial College London (University of London),
[24] Ryzhakov, P., Rossi, R., Idelsohn, S., & Oñate, E. (2010). A monolithic Lagrangian approach for fluid–structure interaction problems. Computational Mechanics, 46(6), 883-899.
[25] Tuković, Ž., Karač, A., Cardiff, P., Jasak, H., & Ivanković, A. (2018). OpenFOAM finite volume solver for fluid-solid interaction. Transactions of FAMENA, 42(3), 1-31.
[26] Turek, S., & Hron, J. (2006). Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In Fluid-structure interaction (pp. 371-385): Springer.
[27] Walhorn, E., Kölke, A., Hübner, B., & Dinkler, D. (2005). Fluid–structure coupling within a monolithic model involving free surface flows. Computers & structures, 83(25-26), 2100-2111.
[28] Wall, W., Mok, D., Schmidt, J., & Ramm, E. (2000). Partitioned analysis of transient nonlinear fluid structure interaction problems including free surface effects. In Multifield Problems (pp. 159-166): Springer.
[29] Wall, W. A. (1998). Fluid-structure interaction based upon a stabilized (ALE) finite element method. Paper presented at the Computational Mechanics (World Congress), New Trends and Applications, 1998.
[30] Wang, J., He, G., You, R., & Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Engineering, 158, 1-14.
[31] Wu, Y.-T., Hsiao, S.-C., Huang, Z.-C., & Hwang, K.-S. (2012). Propagation of solitary waves over a bottom-mounted barrier. Coastal Engineering, 62, 31-47.