簡易檢索 / 詳目顯示

研究生: 曾敬源
Tseng, Chin-Yuan
論文名稱: 鉻-矽-鋁 薄膜電阻之製作及電特性之研究
Development of High Resistance of Thin Film Resistor by Sputtering
指導教授: 黃正亮
Huang, Cheng-Liang
共同指導教授: 李文熙
Lee, Wen-Shi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 67
中文關鍵詞: 薄膜薄膜電阻濺鍍鉻-矽-鋁電阻器
外文關鍵詞: thin film, thin film resistor, sputtering, Cr-Si-Al
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用直流磁控濺鍍方法製備Cr-Si-Al電阻薄膜在高純度氧化鋁基板上,使觀FE-SEM及GI-XRD觀察鍍膜之微結構。探討不同之濺鍍壓力、濺鍍功率及退火溫度對電阻薄膜之微結構、電阻率、及電阻溫度係數之影響與關係,並選用濺鍍工作壓力3mtorr及濺鍍功率300W製備薄膜晶片電阻器。
    結果觀察:初鍍膜之電阻率與濺鍍功率呈負相關,而與濺鍍之工作壓力呈正相關。初鍍膜電阻率與鍍膜厚度,呈現先下降後上升之趨勢。退火溫度在350℃之前,鍍膜為非晶態,呈現負TCR。隨著退火溫度上升至400℃,鍍膜開始有微量的結晶析出,TCR隨退火溫度而呈正相關,在退火溫度至500℃時,TCR有急遽上升的現象,此為結晶晶粒數量及結晶尺寸變大之關係。退火溫度與電阻率的關係呈現先微幅上升,至450℃之後,電阻率開始下降,此現象可用活化隧道理論解釋。由FE-SEM之形貌觀察,在450℃有微小之結晶晶粒,550℃之結晶數量及尺寸均變大,與所觀察之退火溫度對TCR之影響相符。在GI-XRD的觀察中,在500℃之退火溫度下,有較明顯的結晶峰出現,比對為Cr5Si3之結晶結構。
    以工作壓力3mtorr及濺鍍功率300W製備0603 680KΩ之薄膜晶片電阻器,其容差在±0.1%以內,TCR可達±25ppm/℃,Hot TCR與Cold TCR中心值相差約5ppm/℃。短時間過負載及壽命測試均符合規格需求。評估此Cr-Si-Al靶材可應用於型別0603 、阻值47KΩ~680KΩ、阻值容差±0.1%、TCR±25ppm/℃之薄膜晶片電阻器之製作。

    Abstract
    In this study, to prepare Cr-Si-Al resistive films in high-purity alumina substrate by DC magnetron sputtering method. FE-SEM and GI-XRD were used to observe the microstructure of thin films in order to explore the influence and relationships of the different sputtering pressure, sputtering power and annealing temperature on the resistivity and temperature coefficient of resistance of thin films. And to prepare the samples of thin film chip resistors with 3mtorr working pressure and DC 300W power sputtering conditions.
    According to the results , as sputtering , the resistivity of films is negative correlation to sputtering power, and positive correlation to the sputtering working pressure. With the thickness of sputtered films increasing, the resistivity of films rises at the beginning and then goes down. The microstructure of the films annealed lower than 350℃ is in an amorphous state and as a negative TCR. As the annealing temperature rises to 400 ℃, sputtered films begin to trace the crystalline phase, and TCR is positive relation to annealing temperature. When the annealing temperature rises to 500 ℃, TCR a rapid rise remarkably. It caused by the number of crystalline grain and crystalline grain size are increase. Before annealing temperature 450℃, the resistivity of sputtered films is first increased slightly. After 450 ℃, the resistivity begins to decrease. This phenomenon can be explained by thermally assisted tunneling theory. The morphology by FE-SEM observing, a small grain of the crystalline phase begins to appear at 450 ℃. When annealed at 550 ℃,the volume fraction and size of crystalline phase increase obviously, as meet to the observation of the effect of annealing temperature on the TCR. In the GI-XRD observation, the annealing temperature at 500 ℃, there are the more obvious peaks of crystalline phase as compared to the crystal structure of Cr5Si3.
    The preparation of 0603 680KΩ of thin film chip resistors was sputtered by 3mtorr working pressure and DC power 300W. Its tolerance at ± 0.1%, TCR up within ± 25 ppm/℃, The difference between the median of Hot TCR and Cold TCR is about 5 ppm/℃. Short time overload testing is within specification of requirements. After evaluation, this Cr-Si-Al target can be applied to product the thin film chip resistors of type 0603, resistance 47KΩ ~ 680Ω, resistance tolerance of ± 0.1%, TCR ± 25 ppm/℃.

    目錄 摘要…………………………………………………………………………………………I Abstract …………………………………………………………………………………II 誌謝………………………………………………………………………………………III 目錄 ………………………………………………………………………………………IV 圖目錄………………………………………………………………………………………V 表目錄 ……………………………………………………………………………………VI 第一章 緒論………………………………………………………………………………1 1-1 前言 ……………………………………………………………………………1 1-2 研究動機與目的 ………………………………………………………………2 第二章 文獻回顧與理論基礎……………………………………………………………4 2-1 薄膜晶片電阻器 ………………………………………………………………4 2-1-1 薄膜晶片電阻器之結構 ………………………………………………4 2-1-2 薄膜晶片電阻器之尺寸、電氣及品質規格……………………………5 2-1-3 薄膜晶片電阻器之製作流程 …………………………………………7 2-2 濺射鍍膜(Sputtering Deposition)…………………………………………9 2-2-1濺鍍原理…………………………………………………………………9 2-2-2 電漿(Plasma)………………………………………………………10 2-2-3 輝光放電(Glow Discharge)……………………………………………11 2-2-4 二極直流磁控濺鍍(DC Magnetron Sputtering) ……………………14 2-3薄膜成核成長理論……………………………………………………………16 2-4 薄膜電阻的電性………………………………………………………………21 2-4-1 面電阻值(Sheet Resistance)………………………………………21 2-4-2 電阻率…………………………………………………………………22 2-4-3 電阻溫度係數(Temperature Coefficient of Resistance,TCR).23 2-4-4 薄膜電阻的量測………………………………………………………24 2-5 濺鍍製程參數對薄膜特性的影響……………………………………………26 2-5-1 工作壓力(Working Pressure)………………………………………26 2-5-2 濺鍍功率……………………………………………………………27 2-5-3 濺鍍時間……………………………………………………………28 第三章 實驗步驟與方法………………………………………………………………29 3-1 實驗流程………………………………………………………………………29 3-2 實驗材料………………………………………………………………………30 3-3 鍍膜製程………………………………………………………………………31 3-3-1 濺鍍系統:……………………………………………………………31 3-3-2 鍍膜參數………………………………………………………………32 3-3-3 鍍膜步驟………………………………………………………………33 3-3-4 鍍膜熱處理步驟………………………………………………………33 3-4 薄膜電性量測與分析……………………………………………………34 3-4-1 沈積率計算……………………………………………………………34 3-4-2 面電阻量測……………………………………………………………35 3-4-3 電阻率轉換……………………………………………………………38 3-4-4 溫度電阻係數(TCR)量測 ……………………………………………38 3-4-5 GI-XRD結構分析………………………………………………………39 3-4-6 FE-SEM 場發掃描式電子顯微鏡表面形貌分析 ……………………39 3-5 薄膜晶片電阻器製作與可靠度測試…………………………………………39 第四章 實驗結果與討論………………………………………………………………41 4-1 初鍍薄膜的探討………………………………………………………………41 4-1-1 薄膜沈積率……………………………………………………………41 4-1-1-1 濺鍍功率對薄膜沈積率之影響………………………………41 4-1-1-2 工作壓力對薄膜積率之影響…………………………………42 4-1-2 薄膜厚度對薄膜電阻率之影響………………………………………44 4-1-3 濺鍍功率對薄膜電阻率之影響………………………………………47 4-1-4 濺鍍工作壓力對電阻率之影響………………………………………48 4-2 薄膜晶片電阻器之濺鍍條件選擇……………………………………………50 4-3 薄膜熱處理之探討……………………………………………………………50 4-3-1 退火溫度對電阻溫度係數(TCR)之影響 ……………………………50 4-3-2 退火溫度對電阻率之影響……………………………………………54 4-4 薄膜結構分析…………………………………………………………………55 4-4-1 FE-SEM 表面型態分析 ………………………………………………55 4-4-2低掠角GI-XRD 之結晶結構分析 ……………………………………57 4-5 薄膜晶片電阻器製作及可靠度測試…………………………………………58 4-5-1 粒狀晶片電阻器TCR測試…………………………………………………58 4-5-2 粒狀晶片電阻器短時間過負載(STOL)測試………………………………59 第五章 結論……………………………………………………………………………61 參考文獻…………………………………………………………………………………63 圖目錄 圖1-1 住友金屬礦山株式會社CrSiAl合金靶材成份專利範圍…………………………3 圖2-1典型之薄膜晶片電阻器結構………………………………………………………4 圖2-2薄膜晶片電阻器製作流程參考圖…………………………………………………8 圖2-3 濺鍍原理示意圖 …………………………………………………………………10 圖2-4 不同壓力下所得電漿中氣體溫度與電子溫度之關係 …………………………11 圖2-5 輝光放電電漿的形態和名稱 ……………………………………………………12 圖2-6 磁控濺鍍源裝置示意圖 …………………………………………………………15 圖2-7 薄膜成長機制示意圖 ……………………………………………………………18 圖2-8 薄膜之孕核與成長模式 …………………………………………………………18 圖2-9 兩種鍍層的結構模型 (a) Movchan 和Demchisin 所提出。(b) Thornton 所提出之SZM 模型。 …………………………………………………………………19 圖2-10 Van Der Pauw(范德柏)法電阻結構 ……………………………………………24 圖2-11 Van Der Pauw(范德柏)法電流與電壓流動示意圖 ……………………………24 圖2-12 四點探針量測示意圖 …………………………………………………………26 圖3-1 實驗流程圖 ………………………………………………………………………29 圖3-2 濺鍍系統示意圖 …………………………………………………………………31 圖3-3 接觸式探針膜厚量測方法 ………………………………………………………34 圖3-4 (a)開爾文(Kelvin)四線連接測試示意圖。(b)自動四線連接電阻值量測系統。36 圖3-5 (a)0603電阻圖案設計示意圖。(b)0603實驗樣品圖……………………………37 圖3-6 電阻溫度係數量測系統 …………………………………………………………39 圖3-7 雷射切割示意圖 ……………………………………………………………40 圖4-1 不同工作壓力下,薄膜沈積率與濺鍍功率關係圖。工作壓力分別為1mtorr、3mtorr、5mtorr、7mtorr ……………………………………………………43 圖4-2 不同濺鍍功率下,薄膜沈積率與工作壓力關係圖。濺鍍功率分別為150W、300W、450W、600W ………………………………………………………44 圖4-3 固定工作壓力3mtorr下,改變不同濺鍍功率,(a)薄膜面電阻與薄膜厚度之關係。(b)薄膜電阻率與薄膜度之關係。 ……………………………………46 圖4-4 在不同濺鍍功率、工作壓力及薄膜厚度之下,薄膜電阻率與濺鍍功率之 關係。 ………………………………………………………………………48 圖4-5 在不同濺鍍功率、工作壓力及薄膜厚度之下,薄膜電阻率與濺鍍功率之 關係。…………………………………………………………………………49 圖4-6 在結晶化過程中TCR的變化[2]。 …………………………………………52 圖4-7 溫度電阻係數TCR與退火溫度之關係。濺鍍條件3mtorr、300W,退火持溫3 小時膜厚100/300/500/1500A …………………………………………………53 圖4-8為各膜厚達到TCR=0時,所需之退火溫度(T0) ……………………………53 圖4-9不同膜厚,電阻率與退火溫度之關係,膜厚分別為100Å、300Å、500Å及 1500Å。…………………………………………………………………………55 圖4-10 不同退火溫度下,薄膜之表面型態。工作壓力3mtorr、濺鍍功率300W、膜厚1500 Å。(a)熱處理前 (b)350℃ (c)450℃ (d)550℃………………………56 圖4-11 不同退火溫度之GI-XRD之繞射圖。 ………………………………………57 圖4-12 GI-XRD薄膜結構分析。濺鍍功率300W、工作壓力3mtorr、膜厚1500 Å、退火溫度500℃,持溫3小時。 ………………………………………………58 圖4-13 粒狀TCR測試。型別0603,阻值分別為47KΩ、100KΩ、330KΩ、 680KΩ。………………………………………………………………………59 圖4-14 粒狀短時間過負載測試。型別0603,阻值分別為47KΩ、100KΩ、330KΩ、680KΩ。………………………………………………………………………60 圖4-15所示,粒狀壽命(Life)之測試,型別0603,阻值為680KΩ ………………60 表目錄 表1-1 電阻合金膜之面電阻及溫度電阻係數……………………………………………3 表2-1 薄膜晶片電阻器之尺寸規格 ……………………………………………………5 表2-2 薄膜晶片電阻器之電氣規格 ……………………………………………………6 表2-3 薄膜晶片電阻器之環境品質測試規格 …………………………………………6 表3-1 氧化鋁基板規格 …………………………………………………………………31 表3-2 鍍膜參數 …………………………………………………………………………32 表4-1 Cr、Si、Al靶材之濺鍍產率(Sputtering yield)(Ar+) ……………………………47

    參考文獻
    [1] Chen TM, "1/f noise in Ru-based thick- film resistors",Journal of Solid-state electronics,Vol. 25,No. 8,Aug (1982).
    [2] J.J VAN DEN BROEK, J.J.T.M. DONKERS, R.A.F VAN DER RIJT,J.T.M. JANSSEN, ”METAL FILM PRECISION RESISTORS: RESISTIVE METAL FILMS AND A NEW RESISTOR CONCEPT ”,Philips Journal of Research, vol.51, No.3, pp.429-427 (1998).
    [3] 金同寿主編,“阻容元件及其片式化技術”,電子材料與元器件專業教學指導委員會,China,2000。
    [4] R.Moffatt Kennedy,"Materials for thin film Resistors",Adancing Microlecrtonics September / October,pp.12-17 (1999).
    [5] 賴耿陽,“電子用金屬材料實務”,復漢出版社,2000。
    [6] TAKAGI MASANORI, SATO IWAO, OSAKO TOSHIYUKI, PATENT OF JAPAN JP 2007-073651 , SUMITOMO METAL MINING CO LTD, 22.03.2007.
    [7] 國巨股份有限公司。
    [8] 陳泰銘,“非光蝕刻之薄膜電阻器之製造方法”,中華民國專利公報,TW 571426,2004。
    [9] 田民波,“薄膜技術與薄膜材料”,五南圖書出版公司,2007。
    [10] 柯賢文,“表面與薄膜處理技術”,全華圖書股份有限公司,2007。
    [11] 吉田貞史、白木靖寬,“薄膜工程學”,全華科技圖書,2004。
    [12] 藍天豪,“鎳鉻薄膜電阻特性與顯微組織之研究”,義守大學材料科學與工程學系碩士論文,2005年。
    [13] 許恭銘,“PVD設備元件與PC-based製程監控系統技術”,金屬工業研究發展中心 ,2005。
    [14] D. S. Rickerby and A. Matthews, “Advanced Surface Coatings︰a Habdbook of Surface Engineering”, Blackie&Son Ltd., London , Vol.196, (1991).
    [15] S.M. Rossnagel,“Directional and Preferential Sputtering-Based Physical Vapor Deposition”, Thin Solid Films, Vol.263, pp.1-12 (1995).
    [16] K.H. Dae, K.H. Eun, C. Siyoung, Y.Y. Bong and L.D. Hyeon, “Microstructure Analyses of the Titanium Films Formed by the Ionized Sputtering Process”, Thin Solid Films, Vol.340, pp.13-17 (1999).
    [17] 江政忠、鄭銘湖、蕭和彥、蔡春鴻、陳至信、蔡佩勛、高健勛,“濺鍍源電漿狀態之探討”,真空科技,第13 卷,第2 期,pp.64-67,1999。
    [18] 董寰乾、張六文,“濺鍍薄膜沈積技術簡介”,技術與訓練,第27 卷,
    第4 期,pp.146-152,2002。
    [19] 謝芳吉、凌永健,“輝光放電質譜術(上)”,科儀新知,第14 卷,第5
    期,pp.57-69,1993。
    [20] 謝芳吉、凌永健,“輝光放電質譜術(下)”,科儀新知,第14 卷,第6
    期,pp.25-37,1993。
    [21] 董家齊、陳寬任,“奇妙的物質第四態-電漿”,科學發展,第354 期, pp.52-59,2002。
    [22] W. Ensinger, K. Volz and B. Enders, “An Apparatus for In-Situ or Sequential Plasma Immersion Ion Beam Treatment in Combination with R.F. Sputtered Deposition or Triode D.C. Sputter Deposition”, Surface and Coating Technology, 120-121, pp.343-346, (1999).
    [23] 張凱傑、花瑞銘,“連續式磁控濺度設備系統整合”,中華民國鍍膜科技研討會暨國科會計畫研究成果發表會論文集,pp.337-340,2002。
    [24] R. D. Arnell and P. J. Kelly, “Recent Advances in Magnetron Sputtering”, Surface and Coating Technology, Vol.112, pp.170-176 (1999).
    [25] Amit Das, Chris Grabbe, Robert Hufnagel, ”Complexities in The Deposition of Thin Film Resistors” , CARTS USA 2008, (2008).
    [26] 楊志豪,“雙靶射頻磁控濺鍍系統製備氧化銦錫薄膜摻雜錫,鈦及及鉻之性質研究”,國立成功大學材料科學與工程學系,博士論文,中華民國九十七年一月。
    [27] S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood “Handbook of Plasma Processing Technology”, Park Ridge, New Jersey: NoyesPublications (1982).
    [28] J. L. Vossen and W. Kern, “Thin Film Processes II”, Academic Press, Inc. ,Bonton, pp. 21 (1991).
    [29] L. J. Vossen, and W. Kerm, “Thin Film Process”, Academic Process ,pp. 134. (1999)
    [30] B.A. Movchan, A.V. Demchishin, “Study of the structure and propertiesof thick vacuum condensates of nickel, titanium, tungsten, aluminumoxide and zirconium dioxide”, Phys. Met. Metallogr, 28, pp. 83-90 (1969).
    [31] J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings “ , Journal of Vacuum Science and Technology, pp. 830-835 (1986).
    [32] 李岳霖,“熱處理對鎳鉻薄膜電阻特性之影響”,義守大學材料科學與工程學系,碩士論文,中華民國九十六年七月
    [33] P. M. Hall, “Resistance Calculations for Thin Film Rectangles”, Thin Solid Films, Vol.300, pp.256-264 (1999).
    [34] 黃國貞,“半導體標準表面電阻標準之建立”,量測資訊,第65 期,1月,pp.32-36(1999)。
    [35] 鞏小燕、楊毅、闞敏, “磁性薄膜磁電阻效應的測量”,上海大學學報,第5卷,第2期,4月,pp.160-163,1999。.
    [36] K. S. Bhat, S. K. Datta and C. Suresh, “Electrical and MicrowaveCharacterization of Kanthal Thin Films”, emperature and size effect”,Thin Solid Films, Vol.332, pp.220-224(1998).
    [37] L. I. Belic, K. Pozun and M. Remskar, “AES, AFM and TEM Studies of NiCr Thin Films for Capacitive Humidity Sensors”, Thin Solid Films, Vol.317, pp.173-177 (1998).
    [38] E. Riad, A. R. Aicha and D. Barlow, “Thin Film Technology Handbook”, McGraw-Hill, 1998.
    [39] Y. Taga and R. Takahasi, “Role of Kinetic Energy of Sputtered Particles in Thin Film Formation”, Surface science, Vol.386, pp231-240 (1997).
    [40] K. Rajanna and M. M. Nayak, “Strain Sensitivity and Temperature Behavior of Inval Alloy Films”, Materials Science and Engineering,pp.288-292(2000).
    [41] LEON I. MAISSEL REINHARD GLANG , "Handbook of Thin Film Technology".pp.18-3-18-41.1995
    [42] 邱國峰、莫文皓,“離子化磁控濺鍍之薄膜的微架構與物性研究”,真空科技,第14卷,第3期,pp.22-28,2001。
    [43] 張忠誠、張竟宏,方升昆,“濺鍍參數和基版材質影響氧化鋅薄膜架構的研究”,Chinese Journal of Materials Science,Vol.26,No.1,pp.59-63.,1994。
    [44] W. Abdul-Razzaq and M. Amouruso, “Electron Transport Properties of Ni and Cr Thin Films”, Physica B, Vol.253, pp.47-51(1998).
    [45] 楊宗洲,“Cr 含量對Ni-Cr 合金及薄膜特性影響之研究”,義守大學材料科學與工程學系碩士論文,2004。
    [46] H. Ma, J. S. Cho and C. H. Park, “A Study of Indium Tin Oxide Thin Film Deposited at Low Temperature Using Facing Target Sputtering System”, Surface and Coatings Technology, 2002, pp.131-137.
    [47] DEPARTMENT OF DEFENSE USA, TEST METHOD STANDARD ELECTRONIC AND ELECTRICAL COMPONENT PARTS, MIL-STD-202G, 8 February 2002
    [48] LUO Shan, ZHANG Zhengyuans,”Optimization of CrSi Resistor Annealing Conditions”, Microelectronics, Vol. 38,N0. 3, pp316-319, Jun. 2008
    [49] M. Girtan and G. I. Rusu, “On the Size Effect in In2O3 Thin Films”,
    Analele Stintifice Ale UniversitatII, pp.166-172, 1999-2000.
    [50] LIN Ze-wei, DONG Xian-ping, WU Jian-sheng, “Miostructure and Resistivity Analysis of Cr-Si-Al Thin Films”, Journal of ShangHai JiaoTong University”, Vol.37, No.12, Dec. 2003

    無法下載圖示 校內:2020-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE