| 研究生: |
王重勝 Wang, Chung-Sheng |
|---|---|
| 論文名稱: |
開發尺寸排除層析法串聯感應耦合電漿質譜儀方法與單顆粒式感應耦合電漿質譜儀方法用於鑑定水環境中二氧化矽奈米顆粒 Development of Size Exclusion Chromatography-ICP-MS and Single Particle-ICP-MS in the characterization of SiO2NPs in aqueous environments |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 尺寸排除層析法串聯感應耦合電漿質譜儀方法 、單顆粒式感應耦合電漿質譜儀方法 、二氧化矽奈米顆粒 、尺寸解析度 |
| 外文關鍵詞: | SEC-ICP-MS, spICP-MS, SiO2NPs, size resolution |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化矽奈米顆粒的優異物化特性,使其被廣泛應用在民生用品及工業製程。其中一項應用是將二氧化矽奈米顆粒作為半導體工業中化學機械研磨製程的研磨漿液主成分,該製程會排放大量含有二氧化矽奈米顆粒的研磨廢水。已有研究表明二氧化矽奈米顆粒可能導致潛在的(生態)毒理效應,但關於二氧化矽奈米顆粒的環境暴露資訊仍相當缺乏,因此迫切需要建立可以鑑定水環境中的二氧化矽奈米顆粒的檢測方法。
本研究的目的在於開發尺寸排除層析法串聯感應耦合電漿質譜儀方法與單顆粒式感應耦合電漿質譜儀方法,並評估其用於鑑定水環境中二氧化矽奈米顆粒的可行性。將兩根TSKgel G5000PWXL管柱與感應耦合電漿質譜儀相串聯,並以1% FL-70 (v/v) (pH = 11)作為流洗液,這是一種離子型與非離子型界面活性劑的混合物,流速控制在0.25 mL/min,直徑20、50及80 nm的二氧化矽顆粒混合物可以被流洗出來,質量偵測極限約為2.5 mg/L,其粒徑分布與動態光散射的鑑定結果相符;藉由使用微米級取樣時間(100、50及25微米),單顆粒式感應耦合電漿質譜儀方法可在不外加反應氣體的條件下偵測到直徑200 nm及300 nm的二氧化矽顆粒,質量偵測極限約為1.11-3.75 μg/L。為了評估兩方法的實際應用可行性,我們以兩方法分析光電業的化學機械研磨製程廢水,並與動態光散射分析結果進行交互比對,單顆粒式感應耦合電漿質譜儀方法分析結果顯示廢水中二氧化矽顆粒的平均粒徑為368.6 ± 13 nm,而尺寸排除層析法串聯感應耦合電漿質譜儀方法則未偵測到二氧化矽顆粒,結果顯示廢水中的二氧化矽顆粒多非奈米級。整體而言,單顆粒式感應耦合電漿質譜儀方法無法偵測奈米級二氧化矽顆粒,但有較低的質量偵測極限(μg/L);尺寸排除層析法串聯感應耦合電漿質譜儀方法可以偵測奈米級二氧化矽顆粒,但有較高的質量偵測極限(mg/L)。
Due to their extrordinary physic-chemical properties, silica nanoparticles (SiO2NPs) offers economic and technical benefit for wide applications. One primary use of SiO2NPs is chemical mechanical planarization (CMP) process in semiconductor manufacturing where SiO2NPs are used as abrasives to polish silicon wafers. There have been existing research showing that SiO2NPs could lead to potential (eco)toxicity, but the information regarding the exposure of SiO2NPs is largely absent. There is an urgent need to establish detection methods that can characterize SiO2NPs in aqueous matrices and waste streams.
The objective of the study was to develop and compare two methods, namely size exclusion chromatography (SEC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (spICP-MS), in the characterization of SiO2NPs in aqueous environments. For the optimal SEC-ICP-MS method developed, by using two TSKgel G5000PWXL columns in series, and 1% FL-70 (v/v) (pH = 11) at flow rate of 0.25 mL/min, SiO2NPs mixture of 20 nm, 50 nm, and 80 nm diameter were eluted with satisfactory size separation resolution and the mass detection limit is about 2.5 mg/L. The size distribution analyzed by SEC-ICP-MS agreed with that obtained from dynamic light scattering (DLS) analysis. As for spICP-MS, microsecond dwell times (100 μs, 50 μs, and 25 μs) allowed for the characterization of 200 nm and 300 nm diameter SiO2 particles without reaction gas, and the mass detection limit is about 1.11-3.75 μg/L. To further evaluate the utility of both methods, a CMP wastewater from the semiconductor manufacturer in southern Taiwan was analyzed and compared with the result obtained by DLS. The spICP-MS analysis shows that the mean size of SiO2 particles is 368.6 ± 1.3 nm, and SEC-ICP-MS can not detecte the SiO2 particles. The result demonstrates that most of SiO2 particles in the CMP wastewater is not nano-sized. Overall, spICP-MS can not detect nano-sized SiO2, and the mass detection limit is low level (μg/L). SEC-ICP-MS can detect SiO2NPs, and the mass detection limit is high level (mg/L).
Commission Recommendation of 18 October 2011 on the Definition of NanomaterialText with EEA Relevance. 3.
Wong, Y. W. H.; Yuen, C. W. M.; Leung, M. Y. S.; Ku, S. K. A.; Lam, H. L. I. Selected Applications Of Nanotechnology in Textiles. AUTEX Res. J. 2006, 6 (1), 8.
Blasco, C.; Picó, Y. Determining Nanomaterials in Food. TrAC Trends Anal. Chem. 2011, 30 (1), 84–99.
Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Industrial Applications of Nanoparticles. Chem. Soc. Rev. 2015, 44 (16), 5793–5805.
Chen, H.; Guo, D.; Xie, G.; Pan, G. Mechanical Model of Nanoparticles for Material Removal in Chemical Mechanical Polishing Process. Friction 2016, 4 (2), 153–164.
Dionysiou, D. D. Environmental Applications and Implications of Nanotechnology and Nanomaterials. J. Environ. Eng. 2004, 130 (7), 723–724.
Khin, M. M.; Nair, A. S.; Babu, V. J.; Murugan, R.; Ramakrishna, S. A Review on Nanomaterials for Environmental Remediation. Energy Environ. Sci. 2012, 5 (8), 8075.
Lee, J.-A.; Kim, M.-K.; Song, J. H.; Jo, M.-R.; Yu, J.; Kim, K.-M.; Kim, Y.-R.; Oh, J.-M.; Choi, S.-J. Biokinetics of Food Additive Silica Nanoparticles and Their Interactions with Food Components. Colloids Surf. B Biointerfaces 2017, 150, 384–392.
Go, M.-R.; Bae, S.-H.; Kim, H.-J.; Yu, J.; Choi, S.-J. Interactions between Food Additive Silica Nanoparticles and Food Matrices. Front. Microbiol. 2017, 8.
Chuankrerkkul, N.; Sangsuk, S. Current Status of Nanotechnology Consumer Products and Nano-Safety Issues. 6.
Contado, C.; Ravani, L.; Passarella, M. Size Characterization by Sedimentation Field Flow Fractionation of Silica Particles Used as Food Additives. Anal. Chim. Acta 2013, 788, 183–192.
Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review. Int. J. Pharm. Investig. 2015, 5 (3), 124.
Gonçalves, M. C. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018, 23 (8), 2021.
Speed, D.; Westerhoff, P.; Sierra-Alvarez, R.; Draper, R.; Pantano, P.; Aravamudhan, S.; Chen, K. L.; Hristovski, K.; Herckes, P.; Bi, X.; et al. Physical, Chemical, and in Vitro Toxicological Characterization of Nanoparticles in Chemical Mechanical Planarization Suspensions Used in the Semiconductor Industry: Towards Environmental Health and Safety Assessments. Environ. Sci. Nano 2015, 2 (3), 227–244.
Dumitrescu, E.; Karunaratne, D. P.; Babu, S. V.; Wallace, K. N.; Andreescu, S. Interaction, Transformation and Toxicity Assessment of Particles and Additives Used in the Semiconducting Industry. Chemosphere 2018, 192, 178–185.
Holden, P. A.; Klaessig, F.; Turco, R. F.; Priester, J. H.; Rico, C. M.; Avila-Arias, H.; Mortimer, M.; Pacpaco, K.; Gardea-Torresdey, J. L. Evaluation of Exposure Concentrations Used in Assessing Manufactured Nanomaterial Environmental Hazards: Are They Relevant? Environ. Sci. Technol. 2014, 48 (18), 10541–10551.
Dekkers, S.; Bouwmeester, H.; Bos, P. M. J.; Peters, R. J. B.; Rietveld, A. G.; Oomen, A. G. Knowledge Gaps in Risk Assessment of Nanosilica in Food: Evaluation of the Dissolution and Toxicity of Different Forms of Silica. Nanotoxicology 2013, 7 (4), 367–377.
Chen, Y.; Chen, H.; Shi, J. In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Adv. Mater. 2013, 25 (23), 3144–3176.
Eom, H.-J.; Choi, J. SiO2 Nanoparticles Induced Cytotoxicity by Oxidative Stress in Human Bronchial Epithelial Cell, Beas-2B. Environ. Health Toxicol. 2011, 26.
Nabeshi, H.; Yoshikawa, T.; Matsuyama, K.; Nakazato, Y.; Tochigi, S.; Kondoh, S.; Hirai, T.; Akase, T.; Nagano, K.; Abe, Y.; et al. Amorphous Nanosilica Induce Endocytosis-Dependent ROS Generation and DNA Damage in Human Keratinocytes. Part. Fibre Toxicol. 2011, 8, 1.
Du, Z.; Zhao, D.; Jing, L.; Cui, G.; Jin, M.; Li, Y.; Liu, X.; Liu, Y.; Du, H.; Guo, C.; et al. Cardiovascular Toxicity of Different Sizes Amorphous Silica Nanoparticles in Rats After Intratracheal Instillation. Cardiovasc. Toxicol. 2013, 13 (3), 194–207.
Parveen, A.; Rizvi, S. H. M.; Sushma; Mahdi, F.; Ahmad, I.; Singh, P. P.; Mahdi, A. A. Intranasal Exposure to Silica Nanoparticles Induces Alterations in Pro-Inflammatory Environment of Rat Brain: Involvement of Oxidative Stress. Toxicol. Ind. Health 2017, 33 (2), 119–132.
Yang, S.; Ye, R.; Han, B.; Wei, C.; Yang, X. Ecotoxicological Effect of Nano-Silicon Dioxide Particles on Daphnia Magna. Integr. Ferroelectr. 2014, 154 (1), 64–72.
Clément, L.; Zenerino, A.; Hurel, C.; Amigoni, S.; Taffin de Givenchy, E.; Guittard, F.; Marmier, N. Toxicity Assessment of Silica Nanoparticles, Functionalised Silica Nanoparticles, and HASE-Grafted Silica Nanoparticles. Sci. Total Environ. 2013, 450–451, 120–128.
Karimi, S.; Troeung, M.; Wang, R.; Draper, R.; Pantano, P.; Crawford, S.; Aravamudhan, S. Acute and Chronic Toxicity to Daphnia Magna of Colloidal Silica Nanoparticles in a Chemical Mechanical Planarization Slurry after Polishing a Gallium Arsenide Wafer. NanoImpact 2019, 13, 56–65.
Keller, A. A.; Lazareva, A. Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local. Environ. Sci. Technol. Lett. 2014, 1 (1), 65–70.
Kowalczyk, B.; Lagzi, I.; Grzybowski, B. A. Nanoseparations: Strategies for Size and/or Shape-Selective Purification of Nanoparticles. Curr. Opin. Colloid Interface Sci. 2011, 16 (2), 135–148.
Gray, E. P.; Bruton, T. A.; Higgins, C. P.; Halden, R. U.; Westerhoff, P.; Ranville, J. F. Analysis of Gold Nanoparticle Mixtures: A Comparison of Hydrodynamic Chromatography (HDC) and Asymmetrical Flow Field-Flow Fractionation (AF4) Coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27 (9), 1532.
López-Sanz, S.; Fariñas, N. R.; Martín-Doimeadios, R. del C. R.; Ríos, Á. Analytical Strategy Based on Asymmetric Flow Field Flow Fractionation Hyphenated to ICP-MS and Complementary Techniques to Study Gold Nanoparticles Transformations in Cell Culture Medium. Anal. Chim. Acta 2019, 1053, 178–185.
Chang, Y.; Shih, Y.; Su, C.-H.; Ho, H.-C. Comparison of Three Analytical Methods to Measure the Size of Silver Nanoparticles in Real Environmental Water and Wastewater Samples. J. Hazard. Mater. 2017, 322, 95–104.
Proulx, K.; Hadioui, M.; Wilkinson, K. J. Separation, Detection and Characterization of Nanomaterials in Municipal Wastewaters Using Hydrodynamic Chromatography Coupled to ICPMS and Single Particle ICPMS. Anal. Bioanal. Chem. 2016, 408 (19), 5147–5155.
Zhou, X.-X.; Liu, J.-F.; Geng, F.-L. Determination of Metal Oxide Nanoparticles and Their Ionic Counterparts in Environmental Waters by Size Exclusion Chromatography Coupled to ICP-MS. NanoImpact 2016, 1, 13–20.
Zhou, X.; Liu, J.; Jiang, G. Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters. Environ. Sci. Technol. 2017, 51 (7), 3892–3901.
Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27 (5), 796–810.
Gondikas, A. P.; Kammer, F. von der; Reed, R. B.; Wagner, S.; Ranville, J. F.; Hofmann, T. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake (S). Environ. Sci. Technol. 2014, 48 (10), 5415–5422.
Malysheva, A.; Lombi, E.; Voelcker, N. H. Bridging the Divide between Human and Environmental Nanotoxicology. Nat. Nanotechnol. 2015, 10 (10), 835–844.
Yang, Y.; Long, C.-L.; Li, H.-P.; Wang, Q.; Yang, Z.-G. Analysis of Silver and Gold Nanoparticles in Environmental Water Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Sci. Total Environ. 2016, 563–564, 996–1007.
Sung, H. K.; Jo, E.; Kim, E.; Yoo, S.; Lee, J.; Kim, P.; Kim, Y.; Eom, I.-C. Analysis of Gold and Silver Nanoparticles Internalized by Zebrafish (Danio Rerio) Using Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Chemosphere 2018, 209, 815–822.
Mitrano, D. M.; Lesher, E. K.; Bednar, A.; Monserud, J.; Higgins, C. P.; Ranville, J. F. Detecting Nanoparticulate Silver Using Single-Particle Inductively Coupled Plasma-Mass Spectrometry: Detecting AgNP Using Single-Particle ICP-MS. Environ. Toxicol. Chem. 2012, 31 (1), 115–121.
Mitrano, D. M.; Ranville, J. F.; Bednar, A.; Kazor, K.; Hering, A. S.; Higgins, C. P. Tracking Dissolution of Silver Nanoparticles at Environmentally Relevant Concentrations in Laboratory, Natural, and Processed Waters Using Single Particle ICP-MS (SpICP-MS). Env. Sci Nano 2014, 1 (3), 248–259.
Hadioui, M.; Merdzan, V.; Wilkinson, K. J. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environ. Sci. Technol. 2015, 49 (10), 6141–6148.
Donovan, A. R.; Adams, C. D.; Ma, Y.; Stephan, C.; Eichholz, T.; Shi, H. Detection of Zinc Oxide and Cerium Dioxide Nanoparticles during Drinking Water Treatment by Rapid Single Particle ICP-MS Methods. Anal. Bioanal. Chem. 2016, 408 (19), 5137–5145.
Dan, Y.; Shi, H.; Stephan, C.; Liang, X. Rapid Analysis of Titanium Dioxide Nanoparticles in Sunscreens Using Single Particle Inductively Coupled Plasma–Mass Spectrometry. Microchem. J. 2015, 122, 119–126.
Reed, R. B.; Goodwin, D. G.; Marsh, K. L.; Capracotta, S. S.; Higgins, C. P.; Fairbrother, D. H.; Ranville, J. F. Detection of Single Walled Carbon Nanotubes by Monitoring Embedded Metals. Env. Sci Process. Impacts 2013, 15 (1), 204–213.
Lee, S.; Bi, X.; Reed, R. B.; Ranville, J. F.; Herckes, P.; Westerhoff, P. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 2014, 48 (17), 10291–10300.
Montaño, M. D.; Majestic, B. J.; Jämting, Å. K.; Westerhoff, P.; Ranville, J. F. Methods for the Detection and Characterization of Silica Colloids by Microsecond SpICP-MS. Anal. Chem. 2016, 88 (9), 4733–4741.
Tiede, K.; Boxall, A. B. A.; Tiede, D.; Tear, S. P.; David, H.; Lewis, J. A Robust Size-Characterisation Methodology for Studying Nanoparticle Behaviour in ‘Real’ Environmental Samples, Using Hydrodynamic Chromatography Coupled to ICP-MS. J. Anal. At. Spectrom. 2009, 24 (7), 964.
Dekkers, S.; Krystek, P.; Peters, R. J. B.; Lankveld, D. P. K.; Bokkers, B. G. H.; van Hoeven-Arentzen, P. H.; Bouwmeester, H.; Oomen, A. G. Presence and Risks of Nanosilica in Food Products. Nanotoxicology 2011, 5 (3), 393–405.
Barahona, F.; Geiss, O.; Urbán, P.; Ojea-Jimenez, I.; Gilliland, D.; Barrero-Moreno, J. Simultaneous Determination of Size and Quantification of Silica Nanoparticles by Asymmetric Flow Field-Flow Fractionation Coupled to ICPMS Using Silica Nanoparticles Standards. Anal. Chem. 2015, 87 (5), 3039–3047.
Grombe, R.; Charoud-Got, J.; Emteborg, H.; Linsinger, T. P. J.; Seghers, J.; Wagner, S.; von der Kammer, F.; Hofmann, T.; Dudkiewicz, A.; Llinas, M.; et al. Production of Reference Materials for the Detection and Size Determination of Silica Nanoparticles in Tomato Soup. Anal. Bioanal. Chem. 2014.
Correia, M.; Uusimäki, T.; Philippe, A.; Loeschner, K. Challenges in Determining the Size Distribution of Nanoparticles in Consumer Products by Asymmetric Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry: The Example of Al2O3, TiO2, and SiO2 Nanoparticles in Toothpaste. Separations 2018, 5 (4), 56.
Aspanut, Z.; Yamada, T.; Lim, L. W.; Takeuchi, T. Light-Scattering and Turbidimetric Detection of Silica Colloids in Size-Exclusion Chromatography. Anal. Bioanal. Chem. 2008, 391 (1), 353–359.
Sakai-Kato, K.; Ota, S.; Takeuchi, T.; Kawanishi, T. Size Separation of Colloidally Dispersed Nanoparticles Using a Monolithic Capillary Column. J. Chromatogr. A 2011, 1218 (32), 5520–5526.
Pace, H. E.; Rogers, N. J.; Jarolimek, C.; Coleman, V. A.; Higgins, C. P.; Ranville, J. F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83 (24), 9361–9369.
Pitkänen, L.; Striegel, A. M. Size-Exclusion Chromatography of Metal Nanoparticles and Quantum Dots. TrAC Trends Anal. Chem. 2016, 80, 311–320.
Bolea-Fernandez, E.; Leite, D.; Rua-Ibarz, A.; Balcaen, L.; Aramendía, M.; Resano, M.; Vanhaecke, F. Characterization of SiO2 Nanoparticles by Single Particle-Inductively Coupled Plasma-Tandem Mass Spectrometry (SP-ICP-MS/MS). J. Anal. At. Spectrom. 2017, 32 (11), 2140–2152.
Aureli, F.; D’Amato, M.; Raggi, A.; Cubadda, F. Quantitative Characterization of Silica Nanoparticles by Asymmetric Flow Field Flow Fractionation Coupled with Online Multiangle Light Scattering and ICP-MS/MS Detection. J. Anal. At. Spectrom. 2015, 30 (6), 1266–1273.
Gritti, F.; Sanchez, C. A.; Farkas, T.; Guiochon, G. Achieving the Full Performance of Highly Efficient Columns by Optimizing Conventional Benchmark High-Performance Liquid Chromatography Instruments. J. Chromatogr. A 2010, 1217 (18), 3000–3012.
Pitkänen, L.; Montoro Bustos, A. R.; Murphy, K. E.; Winchester, M. R.; Striegel, A. M. Quantitative Characterization of Gold Nanoparticles by Size-Exclusion and Hydrodynamic Chromatography, Coupled to Inductively Coupled Plasma Mass Spectrometry and Quasi-Elastic Light Scattering. J. Chromatogr. A 2017, 1511, 59–67.
Wei, G.-T.; Liu, F.-K. Separation of Nanometer Gold Particles by Size Exclusion Chromatography. J. Chromatogr. A 1999, 836 (2), 253–260.
Zhou, X.-X.; Liu, R.; Liu, J.-F. Rapid Chromatographic Separation of Dissoluble Ag(I) and Silver-Containing Nanoparticles of 1–100 Nanometer in Antibacterial Products and Environmental Waters. Environ. Sci. Technol. 2014, 48 (24), 14516–14524.
Striegel, A. M. Longitudinal Diffusion in Size-Exclusion Chromatography: A Stop-Flow Size-Exclusion Chromatography Study. J. Chromatogr. A 2001, 932 (1–2), 21–31.
校內:2024-08-21公開