| 研究生: |
鄒杰 Tsou, Chieh |
|---|---|
| 論文名稱: |
應用於無線生理信號感測系統之數位處理單元設計與應用於癲癇之深腦刺激系統雛形開發與臨床前試驗 Digital Process Units Design for Wireless Bio-signal Acquisition System and Prototype Development of Deep Brain Stimulation System in Epilepsy for Pre-clinical Trial |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 居家照護系統 、系統設計 、射頻識別 、通訊基頻調變 、晶片 、類比數位轉換器 、校正電容陣列 、單點快速複利葉轉換 、生理信號分析 、癲癇 、閉迴路 、系統晶片整合 、動物實驗設計 、系統整合設計 |
| 外文關鍵詞: | Home care system, system design, radio frequency identification, baseband modulation, chip, analog digital converter, capacitor array calibration, single-bin fast fourier transfer, bio-signal analysis, epilepsy, closed-loop, system-on-a-chip integration, animal testing flow design, system level integration |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近幾年來腦神經病變與心血管罹患人口數高居不下及人口逐漸老化,居家照護系統的議題逐漸變的重要,在居家照護系統中,對於如何做系統設計、縮小其體積與低功耗之考量是非常重要的議題,該類系統之設計通常包含前端截取電路之設計、數位演算法之設計、通訊基頻調變處理器之設計以及無線傳輸介面之設計,本論文主要分為三個部分來分別討論這些設計之議題。
第一部分為實現一個無線可程式化閉迴路之癲癇控制系統,其包含基因轉植、前端感測設計、辨識演算法設計、刺激電路設計、無線收發機設計、系統晶片整合、韌體設計、軟體設計、動物實驗設計、系統整合設計等各領域,於軟體上醫生可參考所呈現之生理訊號,判斷是否給予刺激訊號病同時調整刺激之大小,於硬體上同時也具有偵測之功能可開啟閉迴路控制模式。
第二部分則是針對前端截取電路之類比數位轉換器進行設計,在此部分,本論文提出一個以單點快速複利葉轉換以校正電容陣列之演算法用以提升整體類比數位轉換器效能,並設計一類比數位轉換器配合可程式化邏輯閘陣列平台進行驗證,其中,快速複利葉轉換常用於信號分析中,作者預期演算法電路於校正完成後得以於第一部分之生理信號分析中進行重複使用。
第三部分為選定射頻識別之無線介面進行通訊基頻調變處理器之晶片設計,且將整體收發機系統設置完成,使其得以進行訊號之傳輸,其特點著重於降低傳輸時貼身端及植入端功率消耗,使得系統整體更符合長期監控及穿戴式應用。
本論文之三個部分所著重的分別為無線介面設計、感測部分設計及系統整合之設計,期許未來透過結合本論文之三部分設計,可以得到更接近產品的無線低功耗穿戴式居家照護系統晶片及其晶片應用。
With the high number of people suffering from cardiovascular and cerebral neuropathy and the aging of the population in recent years, the issue of home care systems has become increasingly important. In home care systems, it is very important to consider how to design the system, reduce its size and reduce power consumption. The design of such systems usually includes the front-end acquisition circuit, digital algorithms, the communication baseband modulation processor, and the wireless transmission interface. These design issues are divided into three parts to discuss in this dissertation.
The first part is about the implementation of a wireless programmable closed-loop epilepsy control system. This system includes gene transfer, front-end sensing design, identification algorithm design, stimulation circuit design, wireless transceiver design, system-on-chip integration, firmware design, software design, animal testing design, system integration design, etc. On the software, the doctor can refer to the presented bio-signals to determine whether to give a stimulus signal and also adjust the intensity of the stimulation. It also has a detection function on the hardware to provide the closed-loop control mode.
The second part describes the design for analog digital converters (ADC). In this part, the author proposes a single-bin fast fourier transform (FFT) based algorithm to calibrate the capacitor array to improve the performance of the overall successive approximation register (SAR) ADC, and has done the algorithm verification with an SAR ADC chip and a field programmable logic gate array platform. Among them, the FFT is often used in signal analysis. The author expects that the algorithm circuit can be reused in bio-signal analysis in first part algorithm design after the calibration process is completed.
The third part is the chip design of the baseband modulation processor for the selected radio frequency identification (RFID) wireless interface, and the overall transceiver system is setup completely for signal transmission. The usage of RFID let the whole system more suitable for long-term monitoring and wearable application, because it can reduce the transmission power of body-end / implanted device.
The three parts of this dissertation focus on wireless interface design, sensing circuit design and system integration design. By combining the three parts design, a product prototype about wireless low-power wearable home care system-on-a-chip and its applications can be obtained in the future.
[1] World health organization. “What are neurological disorders?”
https://www.who.int/news-room/q-a-detail/what-are-neurological-disorders#
[2] World health organization. “Epilepsy”
https://www.who.int/news-room/fact-sheets/detail/epilepsy
[3] World health organization. “The top 10 causes of death”
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[4] A. H. Ropper, et al., Adams and Victor's Principles of Neurology, 8th ed., McGraw-Hill, 2005
[5] T. L. Mac, et al., “Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review,” Lancet Neurol., vol. 6, no. 6, pp. 533–543, Jun. 2007.
[6] T. H. Schwartz, et al., “Late seizures in patients initially seizure free after epilepsy surgery,” Epilepsia, vol. 47, no. 3, pp. 567-573, Mar. 2006.
[7] M. V. Oijen, et al., “Resective epilepsy surgery in childhood: The Dutch experience 1992–2002,” Eur. J. Paediatr. Neurol., vol. 10, no. 3, pp. 114-123, May 2006.
[8] Lee, S.T., et al., “A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 23, no. 4, pp. 655-664, Jul. 2015.
[9] Zhong, X.L., et al., Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res Bull, 2011. 85(3-4): p. 81-8.
[10] H. Lee, et al., “A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 360–374, Jan. 2015.
[11] H. Kassiri, et al., “27.3 All-wireless 64-channel 0.013 mm2/ch closed-loop neurostimulator with rail-to-rail DC offset removal,” IEEE Int. Solid-State Circuits Conf., pp. 452-453, Feb. 2017.
[12] W. M. Chen, et al., “A Fully Integrated 8-Channel Closed-Loop Neural Prosthetic CMOS SoC for Real-Time Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 232–247, Jan. 2014.
[13] C. Cheng et al., “A Fully Integrated 16-Channel Closed-Loop Neural-Prosthetic CMOS SoC With Wireless Power and Bidirectional Data Telemetry for Real-Time Efficient Human Epileptic Seizure Control,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3314-3326, Nov. 2018.
[14] G. O'Leary et al., “A recursive-memory brain state classifier with 32-channel track-and-zoom Δ2Σ ADCs and Charge Balanced Programmable Waveform Neurostimulators,” IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, Feb. 2018, pp. 296-298
[15] G. O’Leary, et al., “NURIP: Neural Interface Processor for Brain-State Classification and Programmable-Waveform Neurostimulation,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3150-3162, Nov. 2018.
[16] M. R. Pazhouhandeh et al., “22.8 Adaptively Clock-Boosted Auto-Ranging Responsive Neurostimulator for Emerging Neuromodulation Applications,” IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, Feb. 2019, pp. 374-376.
[17] Y. Jia, et al., “A mm-Sized Free-Floating Wirelessly-Powered Implantable Optical Stimulation Device,” IEEE Trans. Biomed. Circuits and Syst., early access online, DOI: 10.1109/TBCAS.2019.2918761.
[18] A. E. Mendrela, et al., “A High-Resolution Opto-Electrophysiology System with a Miniature Integrated Headstage,” IEEE Trans. Biomed. Circuits and Syst., vol. 12, no. 5, pp. 1065-1075, Oct. 2018.
[19] G. Gagnon-Turcotte, et al., “A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording,” IEEE Trans. Biomed. Circuits and Syst., vol. 11, no. 1, pp. 1-14, Feb. 2017.
[20] H. Kassiri et al., “Arbitrary-Waveform Electro-Optical Intracranial Neurostimulator With Load-Adaptive High-Voltage Compliance,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 582–593, Apr. 2019.
[21] T. Nora, et al., “Stimulation Induced Electrographic Seizures in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus Do Not Preclude a Subsequent Favorable Treatment Response,” Front. Neurol., vol. 9, no. 66, pp. 1-6, Feb. 2018.
[22] M. Kaji, et al., “Generating change in membrane potential by external electric stimulation and propagating the change by using nerve model cell systems,” Electrochim. Acta, vol. 282, pp. 89-96, Aug. 2018.
[23] D. M. Durand and M. Bikson, “Suppression and control of epileptiform activity by electrical stimulation: a review,” Proc. IEEE, vol. 89, no. 7, pp. 1065-1082, Jul. 2001.
[24] R. Fisher, “Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, no. 5, pp. 899-908, May. 2010.
[25] Y. Schiller and Y. Bankirer, “Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro,” J. Neurophysiol., vol. 97, no. 3, pp. 1887-1902, Mar. 2007.
[26] C. C. Chiang, C. C. Lin, and M. S. Ju, “On-off control of burst high frequency electrical stimulation to suppress 4-AP induced seizures,” J. Neural Eng., vol. 10, no. 3, May 2013.
[27] B. H. Siah, et al., “Suppression of acute seizures by theta burst electrical stimulation of the hippocampal commissure using a closed-loop system,” Brain Res., vol. 1593, pp. 117-125, Dec. 2014.
[28] C. C. Chiang, et al., “High frequency stimulation can suppress globally seizures induced by 4-AP in the rat hippocampus: an acute in vivo study,” Brain Stimul., vol. 6, no. 2, pp. 180-189, Mar 2013.
[29] M. L. Rein and J. M. Deussing, “The optogenetic (r)evolution,” Mol. Genet. Genomics., vol. 287, no. 2, pp. 95-109, Feb. 2012.
[30] K. M. Esther, et al., “On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy,” Nat. Commun., vol. 4, no. 1376, Jan. 2013, DOI: 10.1038/ncomms2376.
[31] B. E. Deverman, et al., “Gene therapy for neurological disorders: progress and prospects,” Nat. Rev. Drug Discov., vol. 17, no. 10, pp. 641-669, Oct. 2018.
[32] B. H. Lin, M. S. Ju and C. C. K. Lin, “Suppression of acute and chronic mesial temporal epilepsy by contralateral sensing and closed-loop optogenetic stimulation with proportional-plus-off control,” Biomed. Signal Process. Control, vol. 51, pp. 309-317, May 2019.
[33] A. Vezzani, “Pilocarpine-Induced Seizures Revisited: What Does the Model Mimic?, ” Epilepsy Curr., vol. 9, no. 5, pp. 146-148, Sep. 2009.
[34] J. G. Webster, Medical Instrumentation: Application and Design, NJ, Hoboken: Wiley, 1998.
[35] C. Y. Lin, W. L. Chen and M. D. Ker, “Implantable Stimulator for Epileptic Seizure Suppression with Loading Impedance Adaptability,” IEEE Trans. Biomed. Circuits and Syst., vol. 7, no. 2, pp. 196-203, Apr. 2013.
[36] S. Y. Lee, et al., “Low-Power Wireless ECG Acquisition and Classification System for Body Sensor Networks,” IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 236-246, Jan. 2015.
[37] S. Y. Lee, et al., “A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker,” IEEE Trans. Biomed. Circuits and Syst., vol. 5, no. 6, pp. 511-522, Dec. 2011.
[38] P. Vaidyanathan, S. Mitra and Y. Neuvo, “A new approach to the realization of low-sensitivity IIR digital filters,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 34, no. 2, pp. 350-361, Apr. 1986.
[39] S. Mitra and K. Hirano, “Digital all-pass networks,” IEEE Trans. Circuits Syst., vol. 21, no. 5, pp. 688-700, Sep. 1974.
[40] V. Srinivasan, C. Eswaran and N. Sriraam, “Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks,” IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 3, pp. 288-295, May 2007.
[41] S. M. Pincus, “Approximate entropy as a measure of system complexity,” Proc. Natl. Acad. Sci. USA, vol. 88, no. 6, pp. 2297-2301, Mar. 1991.
[42] C. P. Young, et al., “A Portable Wireless Online Closed-Loop Seizure Controller in Freely Moving Rats,” IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp. 513-521, Feb. 2011.
[43] J. A. Beraldin and W. Steenaart, “Overflow analysis of a fixed-point implementation of the Goertzel algorithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 322-324, Feb. 1989.
[44] C. Tsou, C. C. Liao and S. Y. Lee, “Epilepsy Identification System with Neural Network Hardware Implementation,” IEEE Int. Conf. on Artifi. Intell. Circuits and Syst., vol.1, Mar. 2019.
[45] S. Y. Lee, et. al., “A Programmable Wireless EEG Monitoring SoC with Open/Closed-Loop Optogenetic and Electrical Stimulation for Epilepsy Control,” IEEE Int. Solid-State Circuits Conf., pp. 372-373, Feb. 2019.
[46] H. H. Hsieh and L. H. Lu, “A low-phase-noise K-band CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 552-554, Oct. 2006.
[47] E. Greenwald, et al., “A CMOS Current Steering Neurostimulation Array with Integrated DAC Calibration and Charge Balancing,” IEEE Trans. Biomed. Circuits and Syst., vol. 11, no. 2, pp. 324-335, Apr. 2017.
[48] Y. Zhang, et al., “A 1.9-mW 750-kb/s 2.4-GHz F-OOK Transmitter with Symmetric FM Template and High-Point Modulation PLL,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2627-2635, Oct. 2017.
[49] P. P. Mercier, et al., “A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1463-1474, Jul. 2014.
[50] B. Zhao, et al., “An energy efficient fully integrated OOK transceiver SoC for wireless body area networks,” IEEE Asian Solid-State Circuits Conf., pp. 441-444, Nov. 2013.
[51] M. Vidojkovic, et al., “A 2.4GHz ULP OOK single-chip transceiver for healthcare applications,” IEEE Int. Solid-State Circuits Conf., pp. 458-460, Feb. 2011.
[52] V. D. Rezaei and K. Entesari, “A Fully On-Chip 80-pJ/b OOK Super-Regenerative Receiver with Sensitivity-Data Rate Tradeoff Capability,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1443-1456, May 2018.
[53] L. Jae-Seung, et al., “13.1 A 227pJ/b −83dBm 2.4GHz multi-channel OOK receiver adopting receiver-based FLL,” IEEE Int. Solid-State Circuits Conf., pp. 1-3, Feb. 2015.
[54] D. C. Daly and A. P. Chandrakasan, “An Energy-Efficient OOK Transceiver for Wireless Sensor Networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003-1011, May 2007.
[55] W. A. Smith et al., “A scalable, highly-multiplexed delta-encoded digital feedback ECoG recording amplifier with common and differential-mode artifact suppression,” Proc. Symp. VLSI Circuits, Kyoto, 2017, pp. C172-C173.
[56] M. R. Pazhouhandeh et al., “Artifact-Tolerant Opamp-Less Delta-Modulated Bidirectional Neuro-Interface,” Proc. Symp. VLSI Circuits, Honolulu, HI, 2018, pp. 127-128.
[57] Y. Zhu et al., “A 50-fJ 10-b 160-MS/s Pipelined-SAR ADC decoupled flip-around MDAC and self-embedded offset cancellation,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2614–2626, Nov. 2012.
[58] L. Kull et al., “A 3.1 mW 8b 1.2 GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3049-3058, Dec. 2013.
[59] W. B. Liu, P.L. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW redundant successive-approximation-register analog-to-digital converter with digital calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 1 1, pp. 2661–2672, 2011.
[60] R. Xu, B. Liu, and J. Yuan, “Digitally calibrated 768-kS/s 10-b minimum-size SAR ADC array with dithering,” IEEE J. Solid-State Circuits, vol. 47, no 9, pp. 1-12, Sep. 2012.
[61] G. Wang, F. Kacani, Y. Chiu, “IRD digital background calibration of SAR ADC with coarse reference ADC acceleration,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 1, pp. 11-15, Jan. 2014.
[62] J. Y. Um et al., “A digital calibration of split-capacitor DAC for a differential SAR ADC without additional analog circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no 11, pp. 2845-2856, Nov. 2013.
[63] W.-T Li, F.-L. Li, and Z.-H. Wang, High-resolution and High-speed Integrated CMOS AD Converters for Low-power Applications, THU, Beijing, CH: Springer, 2018
[64] C. C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 731-740, Apr. 2010.
[65] J. A. Duenas, “Voltage-reference impact on total harmonic distortion,” Texas Instruments, Aug., 2016. [Online]. Available: http://www.ti.com/lit/wp/slyy097/slyy097.pdf
[66] J. A. Fredenburg and M. P. Flynn, “Statistical Analysis of ENOB and Yield in Binary Weighted ADCs and DACs with Random Element Mismatch,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 7, pp. 1396-1408, Jul. 2012.
[67] S. Lai et al., “Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 12, pp. 921-925, Dec. 2009.
[68] Y. H. Juan et al., “A distortion cancellation technique with the recursive DFT method for successive approximation analog-to-digital converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 2, pp. 146-150, Feb. 2015.
[69] Y. Shen, Z. Zhu, S. Liu and Y. Yang, “A reconfigurable 10-to-12-b 80-to-20-MS/s bandwidth scalable SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 1, pp. 51-60, Jan. 2018.
[70] N. Verma and A. P. Chandrakasan, “An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1196-1205, Jun. 2007.
[71] C.-W. Hsu et al., “A 12-b 40-MS/s Calibration-Free SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 881-890, Mar. 2018.
[72] T. A. Pearson, G. A. Mensah, R. W. Alexander, J. L. Anderson, R. O. CannonIII, M. Criqui, Y. Y. Fadl, S. P. Fortmann, Y. Hong, G. L. Myers, N. Rifai, S. C. SmithJr, K. Taubert, R. P. Tracy, and F. Vinicor, “Markers of inflammation and cardiovascular disease, application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American heart association,” Circulation, vol. 107, no. 3, pp. 499-511, Jan. 2003, doi: 10.1161/01.CIR.0000052939.59093.45.
[73] L. Wang, L. Kong, F. Wu, Y. Bai, and R. Burton, “Preventing chronic diseases in China,” Lancet, vol. 366, no.9499, pp. 1821-1824, Nov. 2005, doi: 10.1016/S0140-6736(05)67344-8.
[74] T. H. Tan, C. S. Chang, Y. F. Huang, Y. F. Chen, and C. Lee, “Development of a portable linux-based ECG measurement and monitoring system,” J. Med. Syst., vol. 35, no. 4, pp. 559-569, Aug. 2011, doi: 10.1007/s10916-009-9392-4.
[75] J. Penders, M. Altini, C. V. Hoof, and E. Dy, “Wearable sensors for healthier pregnancies,” Proc. IEEE, vol. 103, no. 2, pp. 179-191, Feb. 2015, doi: DOI: 10.1109/JPROC.2014.2387017.
[76] S. Y. Lee, L. H. Wang, and Q. Fang, “A low-power RFID integrated circuits for intelligent healthcare systems,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 6, pp. 1387-1396, Nov. 2010, doi: 10.1109/TITB.2010.2053942.
[77] P. Sundaravadivel, E. Kougianos, S. P. Mohanty, and M. K. Ganapathiraju, “Everything you wanted to know about smart health care: evaluating the different technologies and components of the internet of things for better health,” IEEE Consum. Electron. Mag., vol. 7, no. 1, pp. 18-28, Jan. 2018, doi: 10.1109/MCE.2017.2755378.
[78] P. P. Mercier and A. P. Chandrakasan, “A supply-rail-coupled eTextiles transceiver for body-area networks,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1284-1295, Jun. 2011, doi: 10.1109/JSSC.2011.2120690.
[79] H. Ishizaki and M. Mizuno, “A 0.2 mm2, 27Mbps 3mW ADC/FFT-Less FDM BAN receiver with energy exploitation capability,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 921-927, Mar. 2010, doi: 10.1109/JSSC.2010.2042243.
[80] R. Tesoriero, J. A. Gallud, M. D. Lozano, and V. M. R. Penichet, “Tracking autonomous entities using RFID technology,” IEEE Trans. Consum. Electron., vol. 55, no.2, pp. 650-655, May 2009, doi: 10.1109/TCE.2009.5174435.
[81] A. P. Abidoye and I. C. Obagbuwa, “Models for integrating wireless sensor networks into the internet of things,” IET Wirel. Sens. Syst., vol. 7, no. 3, pp. 65-72, Feb. 2017, doi: 10.1049/iet-wss.2016.0049.
[82] L. Wang, L. D. Xu, Z. Bi, and Y. Xu, “Data cleaning for RFID and WSN integration,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 408-418, Feb. 2014, doi: 10.1109/TII.2013.2250510.
[83] J. S. Lee, Y. W. Su and C. C. Shen, “A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” in Proc. IECON, Taipei, Nov. 2007, pp. 46-51, doi: 10.1109/IECON.2007.4460126.
[84] N. Dey, A. S. Ashour, F. Shi, S. J. Fong, and R. S. Sherratt, “Developing residential wireless sensor networks for ECG healthcare monitoring,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 442-449, Nov. 2017, doi: 10.1109/TCE.2017.015063.
[85] A. Huang, C. Chen, K. Bian, X. Duan, M. Chen, H. Gao, C. Meng, Q. Zheng, Y. Zhang, B. Jiao, and L. Xie, “WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications,” IEEE J. Biomed. Health Inform., vol. 18, no. 2, pp. 693-702, Mar. 2014, doi: 10.1109/JBHI.2013.2279136.
[86] C. H. Hung, Y. W. Bai and R. Y. Tsai, “Design of blood pressure measurement with a health management system for the aged,” IEEE Trans. Consum. Electron., vol. 58, no. 2, pp. 619-625, May 2012, doi: 10.1109/TCE.2012.6227468.
[87] S. M. Huynh, D. Parry, A. C. M. Fong, and J. Tang, “Novel RFID and ontology-based home localization system for misplaced objects,” IEEE Trans. Consum. Electron., vol. 60, no. 3, pp. 402-410, Aug. 2014, doi: 10.1109/TCE.2014.6937324.
[88] H. Cho, J. Kim, Y. Baek, “Large-scale active RFID system utilizing ZigBee networks,” IEEE Trans. Consum. Electron., vol. 57, no. 2, pp. 379-385, May 2011, doi: 10.1109/TCE.2011.5955170.
[89] EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860MHz-960MHz Version 2.0.1. Electronic Product CodeTM (EPC) Standard, 2015. [Online]. Available: https://www.gs1.org/sites/default/files/docs/epc/Gen2_Protocol_Standard.pdf
[90] S. Y. Lee, T. Y. Chen, C. Tsou, and Y. S. Chu, “Wireless energy-harvesting circuit and system with error-correction ASK demodulator for body sensor network with ultra-high-frequency RFID healthcare system,” IET Wirel. Sens. Syst., vol. 8, no. 1, pp. 36-44, Feb. 2018, doi: 10.1049/iet-wss.2017.0082.
[91] S. Y. Lee, Y. C. Su, M. C. Liang, J. H. Hong, C. H. Hsieh, C. M. Yang, Y. Y. Chen, H. Y. Lai, J. W. Lin, and Q. Fang, “A programmable implantable micro-stimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker,” in Proc. ISSCC, San Francisco, Feb. 2011, pp. 44-45, doi: 10.1109/ISSCC.2011.5746212.
[92] P. Solic, J. Radic, and N. Rozic, “Software defined radio-based implementation of RFID tag in next generation mobiles,” IEEE Trans. Consum. Electron., vol. 58, no.3, pp. 1051-1055, Aug. 2012, doi: 10.1109/TCE.2012.6311355.
[93] W. Shi, Z. Guangdone, and C. S. Choy, “Subthreshold passive RFID Tag’s baseband processor core design with custom modules and cells,” in Proc. ISVLSI, Cario, Jul. 2016, pp. 182-187, doi: 10.1109/ISVLSI.2016.82.
[94] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” Proc. IRE, vol. 49, no. 1, pp. 228 -235, Jan. 1961, doi: 10.1109/JRPROC.1961.287814
[95] S. Y. Lee, P. W. Huang, M. C. Liang, J. H. Hong, and J. Y. Chen, “Development of an arrhythmia monitoring system and human study,” IEEE Trans. Consum. Electron., vol. 64, no. 4, pp. 442-451, Nov. 2018, doi: 10.1109/TCE.2018.2875799.
[96] S. Y. Lee, C. Tsou, P. W. Huang, P. H. Cheng, C. C. Liao, Z. X. Liao, H. Y. Lee, C. C. Lin, and C. H. Hsieh, “A programmable wireless EEG monitoring SoC with open/closed-loop optogenetic and electrical stimulation for epilepsy control,” in Proc. ISSCC, San Francisco, Feb. 2019, pp. 372-374, doi: 10.1109/ISSCC.2019.8662385.