簡易檢索 / 詳目顯示

研究生: 傅聖文
Fu, Sheng-Wen
論文名稱: 外應力對可撓式有機太陽能電池之影響
Effect of External Stress on Flexible Organic Solar Cells
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 應力結晶性
外文關鍵詞: stress, crytalline
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究方向著重在三個部分。第一部分為可撓式有機太陽能電池的製作。採用P3HT (poly(3-hexylthiophene)) 共軛高分子和PCBM ( [6,6]-phenyl-C61-butyricacid methyl ester) 富勒烯 (Fullerene) 衍生物當作主動層材料,元件結構為PET/PEDOT:PSS(PH500)/P3HT:PCBM/Al,藉著調整PH500和主動層的厚度以及元件後退火的溫度來提升元件特性參數,在PET基板上製作出轉換效率為3.1%的可撓式有機太陽能電池。
    第二部分開始探討外加應力對主動層薄膜的影響。藉由施加不同大小及方向的應力,由吸收光譜圖可知,主動層在受壓應力退火後,提高了600 nm左右波長的吸收,而在低掠角X光繞射光譜儀分析中發現壓應力會破壞P3HT (100) 結晶強度。
    第三部分施加應力在可撓式有機太陽能電池上,觀察應力對元件特性參數所產生的影響。發現應變由0% 到0.5%過程中使開路電壓和短路電流低於未受應力的元件,原因是破壞了P3HT (100) 方向的結晶強度,以及鋁電極可能產生破壞和裂痕。但由0.5%到1.0 %時,則會使短路電流提升,受應力元件之效率皆小於未受應力之元件。

    This work divided the subject into three parts. The first part, we investigated the blend of conjugated polymer and fullerene derivative -poly(3-hexylthiophene)/[6,6]- phenyl C61 butyric acid methyl ester-(P3HT/PCBM), which was widely used as active layers in organic solar cells. PET/PEDOT: PSS(PH500) /P3HT: PCBM/Al is the structure of device. By tuning the thickness of PH500 and active layer, annealing temperature, the device with better performance can be achieved. Finally, the flexible organic solar cells with PET substrate achieved the power conversion efficiency of 3.1%.
    The second part, we discussed the optical absorption spectrum of active layer and P3HT-crystallinity that applied external stress on the active layer. It was found that the absorption peak of the absorption spectra was improved at 600 nm after annealing on the compressive-strained active layer. However, the P3HT (100) diffraction strength was decreased by grazing angle X-ray diffraction spectrometer (GIXRD).
    Finally, when the strain brought on the flexible organic solar cells from 0% to 0.5%, the open-circuit voltages and short-circuit currents were lower than that of strain-free samples due to the decreasing of crystalline of P3HT (100) and the destruction of aluminum electrode. When the exerted strain were from 0.5% to 1.0%, the short-circuit current increased. All of these devices with stress have lower characteristic parameters than stress-free devices.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1太陽能發展背景 1 1-2太陽能電池種類介紹 2 1-3可撓式有機太陽能電池 5 1-3-1可撓式有機太陽能電池之基板與元件結構 6 1-3-2可撓式有機太陽能電池之電極 9 1-4研究動機 12 1-5 論文架構 13 第二章 太陽能電池的原理 14 2-1 無機太陽能電池原理 14 2-2 有機太陽能電池原理 17 2-2-1有機材料能帶理論 17 2-2-2 有機太陽能發電原理 20 2-3太陽能電池的特性分析 22 2-3-1開路電壓 (Open circuit voltage, Voc) 22 2-3-2短路電流 (Short circuit, Isc) 23 2-3-3填充因子 (Fill factor) 23 2-3-4能量轉換效率(Power conversion efficiency, PCE) 25 2-3-5外部量子效率(External quantum efficiency, EQE) 25 2-4薄膜應力 26 第三章 實驗方法與流程 28 3-1實驗材料 28 3-2太陽能電池元件製作 30 3-2-1 PET基板清洗與表面處理 30 3-2-2 透明陽極層塗佈 31 3-2-3主動層塗佈 32 3-2-4 主動層圖樣化 33 3-2-5背電極蒸鍍 34 3-2-6 元件退火和封裝 34 3-3 施加應力在主動層及高分子太陽能電池元件 35 3-3-1主動層在外加應力下進行熱退火 36 3-3-2主動層在外加應力下進行溶劑退火和熱退火 37 3-3-3施加應力於有機太陽能電池元件流程 38 3-3-4 撓曲有機太陽能電池元件流程 39 3-4 實驗量測 40 3-4-1 I-V的照光特性曲線量測 40 3-4-2 低掠角X光繞射光譜儀 40 第四章 結果與討論 42 4-1 前言 42 4-2 可撓式元件製作與參數調變 42 4-2-1透明陽電極PH500轉速調變 42 4-2-2主動層轉速調變 44 4-2-3 退火溫度調變 45 4-2-4 結論 47 4-3 應力對主動層之影響 47 4-3-1主動層在外加應力下進行熱退火 47 4-3-2主動層在外加應力下進行溶劑退火和熱退火 50 4-3-3 結論 53 4-4應力對元件之影響 53 4-4-1 壓應力對元件之影響 54 4-4-2應力對元件製程之影響 56 4-4-3結論 58 第五章 結論與未來規劃 59 5-1 結論 59 5-1-1 基本元件參數調變 59 5-1-2應力對主動層的影響 59 5-1-3應力對可撓式有機太陽能電池的影響 59 5-2 未來規劃 60 參考文獻 61

    [1] J. Perlin, “From Space to Earth: The Story of Solar Electricity”. (2002).
    [2] 黃信雄, “因應「氣候變化綱要公約」的我國太陽能應用策略”, 太陽能學刊,第2卷,第1期,39-45(1997)。
    [3] I. Repins et al., “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Progress in Photovoltaics: Research and Applications,16, 235 (2008).
    [4] Y. Goushi et al. “Fabrication of pentanary Cu(InGa)(SeS) absorber by selenization and sulfurization”, Solar Energy Materials and Solar Cells, 93, 1318 (2009).
    [5] C.W. Tang et al., “Two-layer organic photovoltaic cell”, Applied Physics Letters,48,183 (1986).
    [6] G. Yu et al. “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, 270,1789, (1995).
    [7] Y. Liang et al.“For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%”, Advance Materials, 22, E135 (2010).
    [8] S. K. Hau et al. “Air-stable Inverted Flexible Polymer Solar Cells Using Zinc Oxide Nanoparticles as an Electron Selective Layer”, Applied Physics Letters, 92, 253301 (2008).
    [9] F. Chen et al. “Flexible Polymer Photovoltaic Device Prepared with Inverted Structures on Metals Foils” IEEE Electron Device Letters, 30, 727 (2009).
    [10] M. Al-Ibrahim et al. “Efficient large-area polymer solar cells on flexible substrates”, Applied Physics Letters, 85,1481 (2004).
    [11] S. Na et al. “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes”, Advance Materials, 20, 4061 (2008).
    [12] L. Duan et al. “Improved flexibility of flexible organic light-emitting devices by using a metal/organic multilayer cathode”, Journal of Physics D: Applied Physics, 42, 075103 (2009).
    [13] W. Geens et al., “Modelling the short-circuit current of polymer bulk heterojunction solar cells”, Thin Solid Films, 451, 22 (2004).
    [14] J. Zou et al., “Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells”, Applied Physics Letters, 96, 203301 (2010).
    [15] S. Choi, et al., “ITO-free large-area organic solar cells”, Optics Express, 18, 458, (2010).
    [16] Y. Zhou et al., “Investigation on Polymer Anode Design for Flexible Polymer Solar Cells”, Applied Physics Letters, 92, 233308 (2008).
    [17] M. W. Rowell, et al., “Organic solar cells with carbon nanotube network electrodes”, Applied Physics Letters, 88, 233506 (2006).
    [18] H. Wu et al., “Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode”, Nano Letters, 10, 4242 (2010).
    [19] Yang et al., “Bending-stress-driven Phase Transitions in Pentacene Thin Films for Flexible Organic Field-effect Transistors” Applied Physics Letters,92, 243305 (2008).
    [20] Y. Kim et al., “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells” nature materials, 5, 197 (2006).
    [21] M. Brinkmann et al., “Orientation of Regioregular Poly(3-hexylthiophene) by Directional Solidification: A Simple Method to Reveal the Semicrystalline
    Structure of a Conjugated Polymer”, Advance Materials, 18, 860–863 (2006).
    [22] B. Xue et al., “Vertical Stratification and Interfacial Structure in P3HT:PCBM Organic Solar Cells”, Journal Physics Chemistry C, 114, 15797 (2010).
    [23] Donald A. Neamen, “半導體物理及元件 (第三版)”.
    [24] 陳壽安,“導電高分子:新世代光電材料”,物理雙月刊23期2卷,第312頁(2001)。
    [25] 陳志平,“高分子有機太陽能電池技術發展概況”,工業材料雜誌,262期(2008)。
    [26] M.C. Scharber et al., “Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10% Energy-Conversion Efficiency”Advance Materials 18,789 (2006).
    [27] C. Brabec et al. “Organic Photovoltaics (Concepts and REALIZATION)”.
    [28] S. S. Sun et al. “Organic Photovoltaics (Mechanisms, Materials and Devices)”.
    [29] Z. Suo et al.“Mechanics of rollable and foldable film-on-foil electronics” Applied Physics Letters,74,8, 22 (1999).
    [30] 汪建民,“材料分析”中國材料科學學會 p674。
    [31] W. D. Callister et al., “Fundamentals of Materials Science and Engineering (Third Editor)”, John Wiley & Sons, Inc., p.709. (2008).
    [32] Tahk et al., “Elastic Moduli of Organic Electronic Materials by the Buckling Method ” , Macromolecules, 42, 18 (2009).
    [33] 鄭信民、林麗娟,“X光繞射應用簡介”材料世界網,181期(2002)。
    [34] G. M. Ng et al, “Optical enhancement in semitransparent polymer photovoltaic cells”, Applied Physics Letters,90,103505 (2007).
    [35] S. Na et al., “Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells” Journal of Materials Chemistry, 19, 9045 (2009).
    [36] G. Li et al., “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nature Matereals,4864. (2005).
    [37] Y. Kim et al, “Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene”, Applied Physics Letters,86, 063502 (2005).
    [38] G. Li et al., “ “Solvent Annealing” Effect in Polymer Solar Cells Based
    on Poly(3-hexylthiophene) and Methanofullerenes” Advance Functional Materials, 17, 1636 (2007).
    [39] M. Shih et al., “Abrupt Morphology Change upon Thermal Annealing in Poly(3-Hexylthiophene)Soluble Fullerene Blend Films for Polymer Solar Cells”, Advance Functional Materials, 20, 748 (2010) .

    下載圖示
    2015-01-01公開
    QR CODE