| 研究生: |
李金育 Lee, Jin-Yu |
|---|---|
| 論文名稱: |
平衡運動平台的系統控制與設計 Design and Development of a 3-DOF Balance System |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 平衡 、平衡控制 、平衡能力評估 、機構 |
| 外文關鍵詞: | balance master, balance, balance control |
| 相關次數: | 點閱:58 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在目前已經研發的動靜態站立平衡(standing balance)評估與訓練的儀器中,多數為前後的傾斜擺動,對動態環境干擾的測試上並不足以模擬現實的環境變動。因此本研究旨在設計一複向式之平衡運動平台,此設備包括前後移動、前後傾斜以及左右旋轉三個自由度之站立平板,並整合壓力擷取和位置記錄系統,作即時的資料擷取和處理,以做為站姿平衡訓練的回饋,並用以增進臨床上評估與量化的功效。
本研究的平衡控制系統包含移動機構、壓力感測系統和電腦系控制介面,其中機構部分以滾珠軸承、螺桿、齒輪和皮帶輪等裝置來帶動平台的移動,以達到精確的運作速度和移動位置的要求。而壓力感測系統為單軸的荷重元,配合類比數位轉換器與電腦連結,可作即時的資料擷取和儲存以利分析研究使用。在控制程式面板上,以人性化、功能性與操作方便為原則,設計可由使用者自由設置各軸速度、加速度和移動位置的控制面板,並設計有簡易的資料分析工具,以利使用者在測試結束後迅速作初步的COP資料分析。本程式的資料分析方式為分析受測者COP的分佈面積,對個人的預測支撐底面積作標準化,以此參數的百分比來做平衡控制能力的分析。
在儀器精確度測試中,靜態與低速時量測到的COP位置與實際位置差±2mm以內,由外部位置偵測裝置量測到的儀器速度符合預設值。在人體平衡測試實驗中,以有肌肉骨骼及前庭功能受損的成年人為實驗組,另一組正常的成年人為對照組,測試本平衡控制系統可產生的七個動作,來觀察並記錄受測者COP的移動變化面積。結果發現COP的移動面積在所有的測試中,實驗組的COP面積百分比大於對照組,且在複合的動作比單一動作的值大。人體對應環境干擾產生的反應會隨環境的變化速度、加速度、方向和位置而有所不同,因此在平衡功能的量化上,本研究所發展的多方向平衡運動控制平台,在可有效的模擬日常生活環境干擾的前提下,結合視訊模擬系統、肌電訊號量測系統、人體動作分析系統,不只能更精確的量測及分析受測者在環境干擾下反應的運動學和動力學資料,亦可為臨床醫學及學術研究提供更多的應用與助益。
Most of commercial systems for evaluating the static and dynamic standing balance are only single axial simulation with limited evaluation modes. However, the events affecting our balance in daily living often involves disturbances in several degrees of freedom (DOF). For clinical diagnosis and treatment in standing and walking ability, a powerful and multi-direction controllable instrument for balance evaluation is necessary. The purpose of this study was to design and develop a 3-DOF balance system which can be used for balance evaluation and training to restore functions for patients clinically. The developed equipment was controlled in three DOF movements including forward/backward translation, toe up/toe down tilt, and clockwise/counterclockwise rotation. The positions of the standing platform during motion were recorded by three incremental encoders which are installed in three motion axes, respectively. Four load cells were installed under the platform to measure the ground reaction force and estimate center of pressure (COP) as an index of balance function and feedback controlling the movements of the plate for balance training.
In order to increase the precision and structure stability in motion, this system use a ball bearing screws, gears and belt drives to drive the designed movement. The loading sensory system, consisting of 4 single axis load cells, was connected to a personal computer (PC) through an analog to digital board for data acquisition and desired movement control was preformed in PC. The program of balance system controller was designed to be user friendly, functional, and easy to use. In addition, it included several tools of analysis and statistics for further evaluation. The sway area, the COP normalized by the base of support (BOS) acquiring from subjects, was used to analyze the suject’s postural stability and balance reaction.
The precision test of instrument shows that the standard deviation of position was less than ±2mm, and the time difference of speed was small enough to be neglected. In laboratory postural balance controlling examination, we measured 6 adults, separating into two groups. Group A consists of 3 patients with deficient in musculoskeletal and vestibular system, and group B with 3 healthy adults was taken as control group. By analyzing the sway area of COP/BOS ratio, the results indicated that the sway area ratio scope of group A was greater than group B with more significant in multi-direction test compared to single-direction test.
In conclusion, we developed a balance master system with 3 degrees of freedom which can quantitatively measure the balance function and be suitable for future clinical and research applications to simulate the events in daily activities. The future study is suggested to integrate with other perturbation equipments, such as eye-goggle for visual simulation, to reveal the interaction of visual-vestibular-perception function that may reflect the reaction or motor deficit of our balance outcome.
1. 胡名霞, 動作控制與動作學習. 2001, 台北市: 金名圖書.
2. Horak, F.B., H.C. Diener, and L.M. Nashner, Influence of central set on human postural responses. Journal of Neurophysiology., 1989. 62(4): p. 841-53.
3. Wolfson, L., et al., A dynamic posturography study of balance in healthy elderly. Neurology., 1992. 42(11): p. 2069-75.
4. Horak, F.B. and H.C. Diener, Cerebellar control of postural scaling and central set in stance. Journal of Neurophysiology., 1994. 72(2): p. 479-93.
5. Cherng, R.J., et al., Performance of static standing balance in children with spastic diplegic cerebral palsy under altered sensory environments. American Journal of Physical Medicine & Rehabilitation., 1999. 78(4): p. 336-43.
6. Tjon, S.S., et al., Postural control in rheumatoid arthritis patients scheduled for total knee arthroplasty. Archives of Physical Medicine & Rehabilitation., 2000. 81(11): p. 1489-93.
7. Inglis, J.T., et al., The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Experimental Brain Research., 1994. 101(1): p. 159-64.
8. McCollum G, L.T., Form and exploration of mechanical stability limits in erect stance. Journal of Rehabilitation, 1989. 21: p. 225-244.
9. Nashner, L.M., F.O. Black, and C. Wall, 3rd, Adaptation to altered support and visual conditions during stance: patients with vestibular deficits. Journal of Neuroscience, 1982. 2(5): p. 536-44.
10. Beckley, D.J., et al., Clinical correlates of motor performance during paced postural tasks in Parkinson's disease. Journal of the Neurological Sciences., 1995. 132(2): p. 133-8.
11. Kuo, A.D., et al., Effect of altered sensory conditions on multivariate descriptors of human postural sway. Experimental Brain Research., 1998. 122(2): p. 185-95.
12. Cohen, H., C.A. Blatchly, and L.L. Gombash, A study of the clinical test of sensory interaction and balance. Physical Therapy., 1993. 73(6): p. 346-51; discussion 351-4.
13. Cass, S.P., D. Borello-France, and J.M. Furman, Functional outcome of vestibular rehabilitation in patients with abnormal sensory-organization testing. American Journal of Otology., 1996. 17(4): p. 581-94.
14. 劉進芳, 周煥銘, and 張森陽, 扭腰運動轉盤, in 專利379581. 2000: Taiwan.
15. 張森陽, 周煥銘, and 劉進芳, 可調整傾斜之運動轉盤, in 專利328729. 1997.
16. 李明義, et al., 監控式站立平衡回饋訓練器, in 專利216030. 1993.
17. 李明義, 生理訊號回饋站姿穩定度評估訓練設備, in 專利31058. 1997.
18. 李明義, 偏癱患者轉身平衡評估訓練設備, in 專利344271. 1998.
19. 洪怡宏, 發展以虛擬實境為主之平衡評估系統. 1999, 國立成功大學.
20. 楊家榮, 動態平衡評估系統之研發. 2001, 國立陽明大學.
21. Wilson, C.E. and J.P. Sadler, Kinematics and dynamics of machinery. 1993, New York, NY: HarperCollinsCollegePublishers.
22. 李適中, 直流馬達速度控制.伺服系統(基礎篇). 民72, 臺北巿: 全華科技圖書公司.
23. 杜光宗, 控制系統與控制馬達的選法、用法. 1996, 臺北縣: 建宏.
24. 杜光宗, 控制馬達的應用. 民77, 台北市: 建宏.
25. 見城尚志, 新村佳久, and 許溢适, 步進馬達原理與應用. 民73, 臺北巿: 全華科技圖書公司.
26. Kenjo, T. and 曹昭陽, 電動馬達與控制. 2003, 臺北市: 五南.
27. Rick Bitter, T.M., Matt Nawrocki, LabVIEW advanced programming techniques. 2001, Boca Raton, FL: CRC Press.
28. 惠汝生, 自動量測系統. 民91, 台北市: 全華科技.
29. 蕭子健, 儲昭偉, and 王智昱, LabVIEW進階篇. 民88, 台北市: 高立出版.
30. 蕭子健, 儲昭偉, and 王智昱, LabVIEW基礎篇. 民91, 台北縣: 高立出版社.
31. 謝勝治, 圖控式程式語言. 民88, 台北市: 全華科技.
32. 謝勝治 and 陳璋琪, LabVIEW. 應用篇 (含自動量測.遠端監控). 民91, 台北市: 全華科技.
33. 廖炳松, LabVIEW 介面控制實習. 民91, 台北市: 全華科技.