| 研究生: |
朱湘儀 Chu, Hsiang-Yi |
|---|---|
| 論文名稱: |
具定頻變磁滯電流控制之雙降壓式變流器 Dual Buck Inverter with Constant Frequency Variable Hysteresis Current Control |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 海潮流發電 、雙降壓變流器 、定頻變磁滯電流控制 |
| 外文關鍵詞: | Tide power transfer system, Dual-buck inverter, Constant frequency variable hysteresis current control |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對海潮流發電系統研製一組雙降壓變流器,基於海潮流發電所產生之輸出交流電電壓變化範圍較大,利用第一級轉換器將其電壓進行整流並升壓,提供穩定直流電壓給第二級雙降壓變流器進行電能轉換。所提系統在輸入電壓變動及負載變動下,昇壓轉換器能藉由迴路控制將其輸出電壓穩定至所設計之電壓以供給後端雙降壓變流器所使用。本文最主要則是提出定頻變磁滯寬度電流控制機制,能降低頻率變動範圍所帶來的影響,定頻下利於設計濾波器及功率元件選用,控制機制相對變得容易實現,而在定頻變磁滯寬度控制下整體系統輸出弦波電壓漣波及總諧波失真率都低於傳統磁滯電流控制,且能提高整體系統轉換效率。最後建構一組輸出額定500W的雙降壓變流器系統,整體效率最高為97%,總諧波失真皆低於2%。
The purpose of this thesis is to implement a dual buck inverter for tide power transfer system. Because the change of front-end tide power transfer system output AC voltage could be varying and low. By realized the first stage of boost converter to rectify and boost the voltage, then convert power to the second stage of dual buck inverter. The thesis presents a new control strategy of constant frequency with variable hysteresis width. It can design the filter and choose power components easily when using the new type control. Compare to conventional hysteresis current control, by constant frequency variable hysteresis current control, it reduces the total harmonic distortion and the ripple of output voltage. Furthermore, it raises the system of power conversion efficiency. Finally, the thesis proposed a prototype 500 watt dual buck inverter system is implemented. The maximum efficiency of the system is 97% and THD is less than 2%.
參考文獻
[1] F. Zhang and C. Gong, “A new control strategy of single-stage flyback inverter,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3169–¬3173, Aug. 2009.
[2] B. M. Song and M. R. Abedi, “Dynamic modeling and performance of a current mode controlled boost DC-DC converter with slope compensation,” in Proc. ITEC'12., Jun. 2012, pp. 1–5.
[3] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel Inverter: A survey of topologies, controls, and Applications,” IEEE Trans. Power Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.
[4] S. Jian, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of PWM converters operating in discontinuous conduction mode,” IEEE Trans. Power Electron., vol. 16, no. 4, pp. 482–492, Jul. 2001.
[5] R. S. Gerald and M. B. Kenneth, “Precision DC-to-AC power conversion by optimization of the output current waveform-the half bridge revisted,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 372–380, Mar.1996.
[6] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, Sep. 2005.
[7] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3075–3078, Nov. 2011.
[8] S. Saha and V. P. Sundarsingh, “Novel grid-connected photovoltaic inverter,” IEE Proc. Generat. Transmiss. Distrib., vol. 143, no. 2, pp. 219–224, Mar. 1996.
[9] J. Almazan, N. Vazquez, C. Hernandez, J. Alvarez, and J. Arau, “A comparison between the buck, boost and buck-boost inverters,” in Proc. IEEE IPEC'02., 2002, pp. 341–346.
[10] EPARC,電力電子學綜論,全華圖書,2007。
[11] 簡正安,應用雙向轉換器建構數位控制三相變流器之研究,國立成功大學電機工程學系碩士論文,2013年
[12] 林軒,具弦波調變與空間相量調變之三相變流器系統,國立成功大學電機工程學系碩士論文,2011年。
[13] 張幼旻,應用雙組昇降壓轉換器建構數位控制式變流器系統之研究,國立成功大學電機工程學系碩士論文,2012年。
[14] 林右鎗,具電流修正控制之市電併聯型變流器,國立成功大學電機工程學系碩士論文,2010年。
[15] T. Kawabata, K. Honjo, N. Sashida, K. Sanada, and M. Koyama, “High frequency link DC/AC converter with PWM cycloconverter,” in Proc. IEEE IASC'90., 1990, pp. 1119–1124.
[16] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292–1306, 2005.
[17] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse based adap¬tive maximum-power-point tracking for photovoltaic power generation system,” IEEE Trans. Ind. Electron., vol. 49,no. 1, pp. 217–223, 2002.
[18] R. O. Caceres, W. M. Garcia, and O. E. Camacho, “A buck-boost DC-AC converter: operation, analysis, and control,” in Proc. IEEE I PEC'98., 1998, pp. 126–131.
[19] D. Chen and G. Wang, “Differential buck dc-dc chopper mode inverters with high-frequency link,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1444–1451, May 2011.
[20] D. Sha, K. Deng, Z. Guo, and X. Liao, “Control strategy for input-series-output-parallel high-frequency AC link inverters,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4101–4111, Nov. 2012.
[21] S. Jiang, D. Cao, Y. Li, and F. Z. Peng, “Grid connected boost-half-bridge photovoltaic micro inverter system using repetitive current control and maximum power point tracking,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4711–4721, 2012.
[22] Y. Konishi, Y. F. Huang, and M. J. Hsieh, “Utility interactive high- frequency flyback transformer link three-phase inverter for photovoltaic ac module,” in Proc. IEEE IECON'09., 2009, pp. 937–994.
[23] D. De and V. Ramanarayanan, “A dc-to-three-phase-ac high-frequency link converter with compensation for nonlinear distortion,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3169–3173, Nov. 2010.
[24] N. Sun, L. Zhang, Y. Xing, M. Xu, Y. Fang, and X. Ma, “A five level dual buck full bridge inverter with neutral point clamp for grid connected PV application,” in Proc. IEEE IECON'11, Nov. 2011, pp.1041–1045.
[25] Y. G. Yanand J. Liu, “A novel hysteresis current controlled dual buck half bridge inverter,” in Proc. IEEE PESC'03, 2003, pp.1615–1620.
[26] A. Khan and K. M. Rahman, “Voltage mode control of single phase boost inverter,” in Proc. ICECE'08., 2008, pp. 665–670.
[27] S. Jain and V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1928–1940, Sep. 2007.
[28] P. Sun, C. Liu, J. S. Lai, C. L. Chen, and N. Kees, “Three-phase dual-buck inverter with unified pulse width modulation,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1159–1167, Mar. 2012.
[29] Z. Yao, L. Xiao, and Y. Yan, “Control strategy for series and parallel output dual-buck half bridge inverters based on DSP control,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 3153–3160, Feb. 2009.
[30] Z. Yao and L. Xiao, “Two-switch dual-buck grid-connected inverter with hysteresis current control,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3310–3318, Jul. 2012.
[31] M. F. N. Tajuddin, N. A. Rahim, and I. Daut, “Design and implementation of a DSP based digital controller for a dc-dc converter,” in Proc. ICCEE'09., 2009, pp. 209–213.
[32] Y. Y. Tzou and S. L. Jung, “Full control of a PWM dc-ac converter for ac voltage regulation,” IEEE Trans. Aerospace Electron. Syst., vol. 34, no. 4, pp. 1218–1226, Oct. 1998.
[33] A. Khan and K. M. Rahman, “Voltage mode control of single phase boost inverter,” in Proc. ICECE'08., 2008, pp. 665–670.
[34] N. Abdel-Rahim and J. E. Quaicoe, “A single-phase delta-modulated inverter for UPS applications,” IEEE Trans. Ind. Electron., vol. 40, no. 3, pp. 347–354, June1993.
[35] P. W. Sun, C. L. Chen, J. S. Lai, and C. Liu, “Cascade dual-buck inverter with phase shift control,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 2067–2077, Apr. 2012.
[36] P. W. Sun, C. L. Chen, J. S. Lai, and C. Liu, “Cascade dual-buck full bridge inverter with hybrid PWM technique,” in Proc. IEEE APEC'12., 2012, pp. 113–119.
[37] Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3153-3160, Mar. 2009.
[38] B. K. Bose, “Energy, environment, and advances in power electronics,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 688–701, Jul. 2000
[39] W. Zhao, D. D.C. Lu, and V. G. Agelidis, “Current control of grid-connected boost inverter with zero steady-state error,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2825–2834, Oct. 2011.
[40] Z. Jianlin, X. Lidan, and L. Shasha, “Double-loop control and stability analysis based on three-phase buck-boost inverter,” in Proc. ICEMS'08., 2008, pp. 1673–1676.
[41] J. Zhu, L. Xiang, and S. Liu, “Double-loop control and stability analysis based on three-phase buck-boost inverter,” in Proc. IEEE ICEMS'08., 2008, pp. 1673–1676.
[42] Z. Yao and L. Xiao, “Two-switch dual-buck grid-connected inverter with hysteresis current control,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3310–3318, Jul. 2012.
[43] Y. F. Liu and P. C. Sen, “Large-signal modeling of hysteretic current-programmed converters,” IEEE Trans. Power Electron., vol. 11, no. 3, pp. 423–430, May 1996.
[44] N. R. Zargari, P. D. Ziogas, and G. Joos, “A two switch high performance current regulated DC/AC converter module,” IEEE Trans. Ind. Appl., vol. 31, no. 3, pp. 583–580, May 1995.
[45] P. C. Loh, G. H. Bode, and P. C. Tan, “Module hysteresis current control of hybrid multilevel inverters,” IEE Proc. Electron. Power Appl., vol. 152, no. 1, pp. 1–8, Jan. 2005.
[46] F. Ma and L. Li, “Research on constant-frequency hysteresis current control in differential three-level grid-connected inverter,” in Proc. IEEE IECON'38., 2012, pp. 730–733.
[47] K. Guo, Y. Chen, Y. X. Gan, and Z. Lin, “Control of z-source photovoltaic inverter for grid-connected based on constant-frequency hysteresis current control,” in Proc. IEEE PVSC'37., 2011, pp. 2340–2345.
[48] P. C. Loh, G. H. Bode, and P. C. Tan, “Modular hysteresis current control of hybrid multilevel inverters,” IEE Proc. Electron. Power Appl., vol. 152, no. 1, pp. 1–8, Jan. 2005.
[49] Z. Yao and L. Xiao, “Control of single-phase grid-connected inverters with nonlinear loads,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1384–1388, Apr. 2013.
[50] P. W. Sun, C. L. Chen, J. S. Lai, and C. Liu, “Grid-tie control of cascade dual-buck inverter with wide-range power flow capability for renewable energy applications,” IEEE Trans. Power Electron., vol.27, no. 4, pp. 1839–1849, Apr. 2012.