簡易檢索 / 詳目顯示

研究生: 李泰廣
Lee, Tai-Kuang
論文名稱: 鉍層狀結構及鈣鈦礦無鉛壓電材料與應用元件之研究
Studies on Lead-free Piezoelectric Materials and Device based on Bismuth Layer and Perovskite Structure
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 94
中文關鍵詞: 鉍層狀結構鈣鈦礦結構無鉛壓電超音波感測器
外文關鍵詞: Bismuth layer structure, Perovskite, Lead-free, Piezoelectric material, Ultrasonic sensor
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無鉛壓電陶瓷發展已數十年,發展主要分為鈣鈦礦結構與非鈣鈦礦結構。鉍層狀結構(BLS)為非鈣鈦礦結構具有優良的鐵電性,適用於高溫及疲勞特性好的鐵電儲存器、濾波器與共振器領域,具有競爭力的材料。鉍層狀結構材料利用碳酸鈉與碳酸鉀溶解與再結晶原理先製作碳酸鈉鉀,優點可降低燒結溫度、製程快速、低溫、成本低。鉍層狀結構陶瓷體(Na0.85K0.15)Bi5Ti5O18由碳酸鈉鉀、氧化鉍、氧化鈦經固態反應法製作,製程中會因碳酸物殘留造成結晶性與電性不佳,需在800 ℃煆燒。本文有系統地在不同燒結條件下,找出燒結溫度990℃、持溫8 小時為最佳條件,陶瓷密度7.08 kg/m3。(Na0.85K0.15)Bi5Ti5O18由電子顯微鏡(SEM、TEM)知為典型板狀結構,利用繞射圖形(DP)與高解析TEM(HRTEM)有螢石結構Bi-O層與之間類鈣鈦礦結構層,具有4層A-site夾雜在雙層Bi-O其中之證據。使用TOPAS計算空間群為I4/mmm,晶軸常數a=3.846 Å、c=40.806 Å且Rwp=9.51,Tc溫度點大於600℃、介電常數214、介電損失0.019、壓電特性d33值=16、Qm值=1375。0.1–3.0 wt.% ZnO添加至NBT鈣鈦礦結構壓電材料使用傳統燒結法,壓電特性與微結構將會被探討,ZnO添加≥2 wt.%時Na0.5Bi0.5TiO3有Zn2TiO4結晶相產生。NBT 添加1.0 wt.% ZnO 於1050℃燒結壓電特性為 d33 =95 pC/N, kp = 0.13, Qm = 250, εr =574。且NBT添加0.5 wt.% ZnO 於1140℃燒結會有較好的壓電特性d33 = 110 pC/N, kp = 0.17, Qm = 201, εr = 57。
    壓電材料最早的應用感測器,有別於水下環境應用,目前有發展出空氣傳輸之超音波感測器,車用系統的倒車雷達即為應用例,商業化感測器為含鉛電材料。本研究完整製作無鉛壓電感測器為具有非對稱指向性的封閉式超音波感測器,研究範圍包括理論模擬、製程實作與實驗量測。無鉛壓電片使用平行板改良極化法,可提供比傳統方式較高良率及極化特性之壓電片。根據理論與ANSYS模擬來設計組裝超音波感測器,再以高溫填膠法縮短元件殘響時間,並成功開發無鉛壓電空氣傳輸之超音波感測器。

    Lead-free piezoelectric ceramics have been developed for decades. Lead-free piezoelectric ceramics can be classified into two main types: perovskite and non-perovskite structures. Generally, bismuth layer structure have an excellent ferroelectricity and can be utilized in high-temperature and fatigue-resistant ferroelectric random-access memories, filters, and oscillators. Original compound-(Na,K)2CO3 and uniform mixing is the key to a successful experiment. Original compound can be synthesized by dissolving and re-crystallizing Na2CO3 and K2CO3, which can help to low-cost, low-temperature synthesis process and deliquesce is worse than sodium carbonate and potassium carbonate. The (Na0.85K0.15)Bi5Ti5O18 ceramic body can be synthesized from original compound, Bi2O3 and TiO2 via a solid state-reaction method. During the synthesis process, residual carbonate can result in poorer ceramic crystallinity and electrical properties; hence, calcination at 800℃ was necessary. The optimal conditions are: sintering temperature of 990℃ for 8 h; and the ceramic parameters are density 7.08 kg/m3 and Curie Temperature Tc >600℃. The ceramic’s micro-structure was found to be a typical plate-like (layered) structure, and DP and HRTEM provided evidence for the presence of a perovskite-like structure between the fluorite-structured Bi-O layers. Four layers of A sites were found to be sandwiched between two Bi-O layers. TOPAS software was employed to calculate the space group of the ceramic body, which was I4/mmm, a=3.846 Å, c=40.806 Å and Rwp=9.51. At the room temperature, dielectric constant=214 and dielectric loss tanδ=1.9%. The piezoelectric characteristics measured after poling were d33=16 and mechanical couple factor Qm=1375. NBT based piezoelectric ceramics doped with ZnO were synthesized using a conventional solid state reaction. The mechanism through which Zn doping altered the piezoelectric properties and microstructures of NBT ceramics was investigated and discussed. NBT based piezoelectric ceramics doped with 0.1–3.0 wt.% ZnO were investigated. An X-ray diffraction examination of the products indicates that they consist mainly of a Na0.5Bi0.5TiO3 crystalline phase with Zn2TiO4 as a secondary phase. The secondary phase is formed due to the addition of ZnO (≥2 wt.%). At room temperature, NBT ceramics with 1.0 wt.% ZnO dopant sintered at 1050℃ exhibit d33 = 95 pC/N, kp = 0.13, Qm = 250, εr = 574 (at a frequency of 1 MHz). Moreover, NBT ceramics with 0.5 wt.% ZnO dopant sintered at 1140℃ show quite good performance: d33 = 110 pC/N, kp = 0.17, Qm = 201, εr = 570 (at a frequency of 1 MHz).
    Piezoelectric ultrasonic sensors basic operating principle is the operating frequency of the driving voltage is applied to the element. Lead-free piezoelectric ultrasonic sensor with asymmetric directivity device was produced. and can be applied in vehicle parking sensors. Self-made lead-free piezoelectric material was used to produce the piezoelectric plate, which was combined with relevant parts to assemble the piezoelectric ultrasonic sensor. The parallel plates method was employed to improve the polarization of the piezoelectric plate, which led to better polarization characteristics than those achieved using traditional methods. A comparison of the results between the ANSYS simulation and practical device found that both results are in agreement, with a minimal error, which indicates that the simulation and practical device correlated and can be used as a basis in designing lead-free piezoelectric ultrasonic sensors.

    摘要 I Abstract III Acknowledgements VI Content VII Figure Captions IX Table Captions XIII Chapter 1 Introduction 1 1-1 Motivation 1 Chapter 2 Background 2 2-1 Evolution of lead-free material 2 Chapter 3 Microstructure of Novel BLS Lead-Free Piezoelectric (Na0.85K0.15)Bi5Ti5O18 Ceramic 6 3-1 Introduction 6 3-2 Experimental procedure 9 3-3 Results and discussion 12 3-4 Summary 25 Chapter 4 ZnO Piezoelectric properties and microstructures of ZnO-doped Bi0.5Na0.5TiO3 ceramics 28 4-1 Introduction 28 4-2 Experimental procedure 29 4-3 Results and discussion 31 4-3-1 Phase evolution in the sintered ceramics 31 4-3-2 Density and piezoelectric properties of the sintered ceramics 41 4-4 Summary 47 Chapter 5 Design of Lead-free piezoelectric ceramic ultrasonic sensor 48 5-1 Experimental procedure 48 5-2 Results and discussion 69 5-2-1 Working center frequency: 69 5-2-2 Sound pressure level 73 5-2-3 Receiving sensitivity 74 5-2-4 Reflecting sensitivity 75 5-2-5 Reverberation time 76 5-2-6 Directivity 77 5-3 Summary 80 Chapter 6 Conclusion 82 Reference 86

    1.“Safety Data Sheet, Lead Coarse Powder GR for Analysis,” Merck, Catalogue No. 107362, Merck Chemicals Ltd, Available at http://www.chemdat.info, 2006.
    2.“Safety Data Sheet, Lead Zirconium Titanium Oxide Sputtering Target,” Stock number: 41068, Alfa Aesar GmbH & Co.KG, Available at http://www.alfa-chemcat.com, 2008 Alpha Aesar.
    3.“Safety Data Sheet, Lead (II) Oxide,” Stock number: 14240, Alfa Aesar GmbH & Co.KG, Available at http://www.alfa-chemcat.com, 2008 Alpha Aesar.
    4.R. D. Brown, “Bismuth”; in Minerals Yearbook, Vol. I, Metals & Minerals, pp. 1–3. Interior Dept., Geological Survey, Washington, DC 20401. Available at http://minerals.usgs.gov/minerals/pubs/commodity/bismuth/110496.pdf (accessed October 7, 2008).
    5.V. Rodilla, A. T. Miles, W. Jenner, and G. M. Hawksworth, “Exposure of Cultured Human Proximal Tubular Cells to Cadmium, Mercury, Zinc and Bismuth: Toxicity and Metallothionein Induction,” Chem.-Biol. Interact., 115 [1] 71–83 (1998).
    6.Y. Sano, H. Satoh, M. Chiba, M. Okamoto, K. Serizawa, H. Nakashima, and K. Omae, “Oral Toxicity of Bismuth in Rat: Single and 28-Day Repeated Administration Studies,” J. Occup. Health, 47 4 293–298 (2005).
    7.B. Aurivillius, Mixed bismuth oxides with layer lattices. 1. The structure type of CaNb2Bi2O9, Ark. Kemi 1 463–480 (1949).
    8.B. Aurivillius, Mixed bismuth oxides with layer lattices. 2. Structure of Bi4Ti3O12, Ark. Kemi 1 499–512 (1949).
    9.B. Aurivillius, Mixed oxides with layer lattices. 3. Structure of BaBi4Ti4O15, Ark. Kemi 2 519–527 (1950).
    10.R.L. Withers, J. G. Thompson, A. D. Rae, The crystal chemistry under lying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6, J. Solid State Chem. 94 404–417 (1991).
    11.R.C. Turner, P. A. Fuierer, R. E. Newnham, T. R. Shrout, Materials for high temperature acoustic and vibration sensors : a review, Appl. Acoust. 41 299–324 (1994).
    12.S.J. Zhang, F. P. Yu, Piezoelectric Materials for High Temperature Sensors, J. Am. Ceram. Soc. 94 3153–3170 (2011).
    13.D. Damjanovic, Materials for high temperature piezoelectric transducers, Curr. Opin. Solid State Mater. Sci. 3 469–473 (1998).
    14.H. Yan, H. Zhang, R. Ubic, M. J. Reece, J. Liu, Z. Shen, Z. Zhang, A lead-free high-curie-point ferroelectric ceramic, CaBi2Nb2O9, Adv. Mater. 17 1261–1265 (2005).
    15.C. -M. Wang, J. -F. Wang, S. J. Zhang, T. R. Shrout, Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics, Phys. Status Solidi (RRL) 3 49–51 (2009).
    16.C.-M. Wang, S. J. Zhang, J. -F. Wang, M. -L. Zhao, C. -L. Wang, Electro mechanical properties of calcium bismuth niobate (CaBi2Nb2O9) ceramics at elevated temperature, Mater. Chem. Phys. 118 21–24 (2009).
    17.T. Takenaka, K. Sakata, Grain-orientation and electrical-properties of hot-forged Bi4Ti3O12 ceramics, Jpn. J. Appl. Phys. 19 31–39 (1980).
    18.S. Swartz, W. A. Schulze, J. V. Biggers, Fabrication and electrical properties of grain oriented Bi4Ti3O12 ceramics, Ferroelectrics 38 765–768 (1981).
    19.A. Megriche, L. Lebrun, M. Troccaz, Materials of Bi4Ti3O12 type for high temperature acoustic piezo-sensors, Sens. Actuators A: Phys.78 88–91 (1999).
    20.C.-M. Wang, J. -F. Wang, High performance Aurivillius phase sodium–potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification, Appl. Phys. Lett. 89 202905 (2006).
    21.C. -M. Wang, J. -F. Wang, Z. -G. Gai, Enhancement of dielectric and piezoelectric properties of M0.5Bi4.5Ti4O15 (M=Na, K, Li) ceramics by Ce doping, Scr. Mater. 57 789–792 (2007).
    22.C. -M. Wang, J. -F. Wang, S. J. Zhang, T. R. Shrout, Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O15) piezoelectric ceramics at elevated temperature, J. Appl. Phys. 105 094110 (2009).
    23.T. Takeuchi, T. Tani, Y. Saito, Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive template grain growth with an extrusion, Jpn. J. Appl. Phys. 39 5577–5580 (2000).
    24.H. Yan, C. G. Li, J. G. Zhou, W. M. Zhu, L. X. He, Y. X. Song, A-site (MCe) substitution effects on the structures and properties of CaBi4Ti4O15 ceramics, Jpn. J. Appl. Phys. 39 6339–6342 (2000).
    25.S. Zhang, N. Kim, T. R. Shrout, M. Kimura, A. Ando, High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics, Solid State Commun.140 154–158 (2006).
    26.H. Yan, H. Zhang, et al., “A Lead-Free High-Curie-Point Ferroelectric Ceramic, Ca-Bi2Nb2O9,” Adv. Mater. 17 [10] 1261-1265 (2005).
    27.J. Liu, Z. J. Shen, et al., “SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures,” J. Eur. Ceram. Soc. 26 [15] 3233-3239 (2006).
    28.H. T. Zhang, H. X. Yan, et al., “The effect of texture on the properties of Bi3.15Nd0.85Ti3O12 ceramics prepared by spark plasma sintering,” Mater. Sci. and Engin. A 475 [1-2] 92-95 (2008).
    29.Kwon S, Sabolsky EM, et al., “High Strain, 〈001〉 Textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 Ceramics: Templated Grain Growth and Piezoelectric Properties,” J. Am. Ceram. Soc. 88 [2] 312-317 (2005).
    30.Richter T., Denneler S., et al., “Textured PMN–PT and PMN–PZT,” J. Am. Ceram. Soc. 91 [3] 929-933 (2008).
    31.Saito, Y., Takao, H., et al., “Lead-free pie-zoceramics,” Nature 432 [1073] 84-87 (2004).
    32.Huseyin Y, Susan T. M., and Gary L. M. “Templated Grain Growth of Textured Sodi-um Bismuth Titanate (Na1/2Bi1/2TiO3-BaTiO3) Ceramics—II Dielectric and Piezoelectric Properties,” J. Electroceramics 11 [3] 217-226 (2003).
    33.Matsuo K., XIE R. -J., et al., “Preparation of Lead-Free Sr2-xCaxNaNb5O15(x=0.1)-Based Piezoceramics with Tungsten Bronze Struct ture,” J. Ceram. Soc. Jap. 110 [1281] 491-494 (2002).
    34.Neurgaonkar, R.R., Oliver, et al., ”Piezoelectricity in tungsten bronze crystals,” Ferro-electrics. 160 [1] 265-276 (1994).
    35.Patro P. K., Kulkarni A. R., et al., In: Kharat DK (ed) National seminar on advances in Electroceramics (NSAE-2006), Armament Research & Development Establishment, Pu-ne, India, 146–153 (2006).
    36.T. K. Lee, W. H. Lee, “Importance Factor for Synthesis Original Compound (Na,K)2CO3 of New Type BLSF Lead-Free Ceramics (Na,K)2Bi6Ti7O24” Chinese J. Phys. 50 [6] 956-965 (2012).
    37.S. Lopatin, T.G. Lupeiko, et al., “Properties of Bismuth Titanate Ceramics Modified with Group V and VI Elements,” Translate to: Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 24 [9] 1551-1554 (1989).
    38.E. C. Subbarao, “A family of ferroelectric bismuth compounds,” J. Phys. and Chem. Solids 23 [6] 665–676 (1962).
    39.A. Chakrabarti, J. Bera, and T. P. Sinha, “Dielectric properties of BaBi4Ti4O15 ceramics produced by cost-effective chemical method,” Physica. B 404 1498-1502 (2009).
    40.Pawley G.S., “unit-cell refinement from powder diffraction scans,” J. Appl. Cryst. 14 357-361 (1981).
    41.Cross E., “Lead-free at last,” Nature 432 24–28 (2004).
    42.Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., et al. “Lead-free Piezoceramics,” Nature 432 84–90 (2004).
    43.Takenaka T., Nagata H., “Current status and prospects of lead-free piezoelectric ceramics,” J. Eur. Ceram. Soc. 25 2693–2700 (2005).
    44.Walter J., Merz J., “The electric and optical behavior of BaTiO3 single domain crystals,” Phys. Rev 76 1219–1222 (1949).
    45.Zhoua X.Y., Gu H.S., Wang T.Y., Li W.Y., Zhou T.S., “Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics,” Mater Lett. 59 1649–52 (2005).
    46.Otonicar M., Skapin S.D., Spreitzer M., Suvorov D., “Compositional range and electrical properties of the morphotropic phase boundary in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 system,” J. Euro. Ceram. Soc. 30 971–979 (2010).
    47.Konig J., Spreitzer M., Janc??ar B., Suvorov D., Samardz??ija Z., Popovic?? A., “The thermal decomposition of K0.5Bi0.5TiO3 ceramics,” J. Eur. Ceram. Soc 29 1695–1701 (2009).
    48.Smolensky G.A., Isupov V.A., Agramovskaya A.I., Ktainik N.N., “New ferroelectrics of complex composition,” Sov. Phys. Solid Stat 2 2651–2657 (1961).
    49.Buhrer C.F., “Some properties of bismuth perovskites,” J. Chem. Phys. 36 798–803 (1962).
    50.Suchanicz J., Kwapulinsk, “X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3,” J. Ferroelectrics 165 249–53 (1995).
    51.Y.-M. Chiang, Farrey Gregory W, Soukhojak Andrey N. “Ferroelectric, piezoelectric pyroelectric studies on BaTi0.95(Ni1/3Nb2/3)0.05O3 ceramics,” Appl. Phys. Lett. 73 3684–2688 (1998).
    52.Nagata H., Takenaka T., “Lead-free piezoelectric ceramics of (Na0.5Bi0.5)TiO3–0.5(Bi2O3–Sc2O3) system,” Jpn. J. Appl. Phys. 36 6055–6057 (1997).
    53.Soukhojak A.N., Wang H., Farrey G.W., Chiang Y.-M., “Superlattice in single crystal barium-doped sodium bismuth titanate,” J. Phys. Chem. Solids 61 301–304 (2000).
    54.Park S.-E., Hong K.S., “Variations of structure and dielectric properties on substituting A-site cations for Sr2+ in (Na1/2Bi1/2)TiO3,” J. Mater. Res. 12 2152–2157 (1997).
    55.Sakata K., Masuda Y., “Ferroelectric and anti-ferroelectric properties of (Na0.5Bi0.5)TiO3–SrTiO3 solid solution ceramics,” Ferroelectrics 7 347–349 (1974).
    56.Lee J.-K., Yi J.Y., Hong K.-S., “Relationship between structure and dielectric property in (1?x)(Na1/2Bi1/2)TiO3–xPbZrO3 ceramics,” Jpn. J. Appl. Phys. Part 1 40 6003–6007 (2001).
    57.Fan G., Lu W., Wang X., Liang F., Xiao J., “Phase transition behavior and electromechanical properties of (Na1/2Bi1/2)TiO3–KNbO3 lead-free piezoelectric ceramics,” J. Phys. D. Appl. Phys. 41 1–6 (2008).
    58.Shinjiro Tashiro, Hideki Nagamatsu, Kunihiro Nagata, “Sinterability and piezoelectric properties of KNbO3 ceramics after substituting Pb and Na for K,” Jpn. J. Appl. Phys. 41 7113–7118 (2002).
    59.Watcharapasorn A., Jiansirisomboon S., “Grain growth kinetics in Dy-doped Bi0.5Na0.5TiO3 ceramics,” Ceram. Int. 34 769–772 (2008).
    60.Smolenskii G.A., Isupov V.A., Agranovskaya A.I., Kainik N.N., “New ferroelectrics of complex composition IV,” Sov. Phys. Solid State 2 2651–2654 (1961).
    61.Lee Y.-C., Huang Y.-L., “Effects of CuO doping on the microstructural and dielectric properties of Ba0.6Sr0.4TiO3 ceramics. J. Am. Ceram. Soc. 92 2661–2667 (2009).
    62.Roth R.S., Rawn C.J., Lindsay C.G., Won-Ng W., “Phase equilibrium and crystal chemistry of the binary and ternary polytitanates and crystallography of the barium zinc polytitanates,” J. Solid State Chem. 104 99–118 (1993).
    63.Muller O., Roy R., “The major ternary structural families,” New York Springer 221 (1974).
    64.Su B., Button T.W., “Microstructure and dielectric properties of Mg-doped barium strontium titanate ceramics,” J. Appl. Phys. 95 1382–1385 (2004).
    65.Chan N.H., Sharma R.K., Smyth D.M., “Nonstoichiometry in acceptor-doped BaTiO3,” J. Am. Ceram. Soc. 65 167–170 (1982).
    66.Ichinose N., Udagawa K., “Piezoelectric properties of (Bi1/2Na1/2)TiO3 based ceramics,” Ferroelectrics 169 317–325 (1995).
    67.Shih C.-F., Li W.-M., Lin M.-M., Hsiao C.-Y., Hung K.-T., “Low-temperature sintered Zn2TiO4:TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency,” J. Alloy Compd. 485 408–412 (2009).
    68.Lee W.-C., Huang C.-Y., Tsao L.-K., Wu Y.-C., “Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics,” J. Eur. Ceram. Soc. 29 1443–1448 (2009).
    69.Fu P., Xu Z., Chu R., Li W., Zang G.H., Hao J., “Piezoelectric, ferroelectric and dielectric properties of La2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics,” Mater. Des. 31 796–801 (2010).
    70.Preethi T.M., Ratheesh R., “Synthesis and dielectric properties of a new class of MX6Ti6O19 (M = Ba, Sr and Ca; X = Mg and Zn) ceramics,” Mater. Lett. 57 2545–2552 (2003).
    71.Moulson A.J., Herbert J.M., “Electroceramics: materials, properties, application,” London: Chapman and Hall 79–82 (1990).

    下載圖示 校內:2021-08-01公開
    校外:2021-08-01公開
    QR CODE