簡易檢索 / 詳目顯示

研究生: 康正泓
Kang, Zheng-Hong
論文名稱: 雙側管型線性永磁同步發電機於波浪能量轉換系統之設計與分析
Design and Analysis of a Doubled-sided Tubular Linear Permanent-Magnet Synchronous Generator for Wave Energy Conversion Systems
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 253
中文關鍵詞: 波浪能轉換系統阿基米德波浪搖擺有限元素分析線性永磁發電機穩定度
外文關鍵詞: wave energy conversion system (WECS), Archimedes Wave Swing (AWS), finite element analysis (FEA), linear permanent-magnet generator (LPMG), stability
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係分析以波浪驅動之波浪能轉換系統,搭配雙側管型線性永磁發電機獨立供電及併聯市電系統運轉之特性。在本論文中,將以單部「阿基米德波浪搖擺」驅動線性永磁發電機,並經由電力電子轉換器併聯電網與連接獨立負載之架構做為研究模型。由於波浪週期隨時間與地點而改變,在分析時將採用頻率掃描與動態響應兩種方法來分析系統特性。本論文在三相平衡系統下採用交直軸等效電路模型,分別建立波浪、「阿基米德波浪搖擺」、線性永磁發電機、整流-換流模組等模型,推導其數學模型來完成整體動態方程式。本論文亦利用有限元素法進行線性永磁機之磁場分析與模擬,了解其運轉特性並求取線性永磁發電機等效模型中所需的重要電氣參數。在穩態方面,則針對不同波浪高度與獨立負載條件,進行系統的波浪頻率掃描與負載掃描,詳細探討浮蓋移動速度、線性發電機輸出功率、系統根軌跡變化等。在動態研究方面,則完成波浪波高與波浪週期的變化、併接點端三相短路故障與無限匯流排電壓驟降之模擬。本論文最後設計一組相位補償控制器來改善所研究波浪發電系統直流鏈電壓的穩定性。

    This thesis analyzes the operating characteristics of a wave energy conversion system (WECS) that contains an Archimedes Wave Swing (AWS) system driving a doubled-sided tubular linear permanent-magnet generator (LPMG) fed to a power grid and independent loads through power-electronics converters (PECs). Since the wave period varied with time and location, both frequency scanning and dynamic-response analysis are adopted in this thesis. A q-d axis equivalent-circuit model is employed to establish the wave, AWS, LPMG, and PECs to derive the complete dynamic equations of the studied system under three-phase balanced loading condition. The finite element analysis (FEA) is also utilized to analyze the magnetic field distribution of the LPMG in order to obtain its important electrical parameters. The velocity of the translator, the output power of the LPMG, and the root loci of the studied system under different wave periods are discussed in detail. Dynamic simulations of the studied system subject to various values of wave period and wave height, voltage drop at the power grid, and a three-phase short-circuit fault at the power grid are also carried out.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 表目錄 X 圖目錄 XIII 符號說明 XIX 第一章 緒論 1 1-1 研究背景與動機 1 1-2 波浪能量轉換系統類型介紹 5 1-3 相關文獻回顧 11 1-4 本論文貢獻 19 1-5 研究內容大綱 19 第二章 雙側管型線性永磁機之有限元素分析 22 2-1 前言 22 2-2 線性發電機類型介紹 22 2-3 雙側管型線性永磁機的磁場模型 27 2-4 FlexPDE有限元素模擬軟體介紹 32 2-5 有限元素模擬結果 35 第三章 系統介紹與數學模型 49 3-1 前言 49 3-2 波浪與AWS之數學模型 49 3-3 單部AWS耦合線性永磁發電機連接獨立負載之數學模型 63 3-4 單部AWS耦合線性永磁發電機透過電力電子設備連接 獨立負載之數學模型 70 3-5 單部AWS耦合線性永磁發電機透過電力電子設備併聯 電網之數學模型 83 第四章 系統的穩態分析 91 4-1 前言 91 4-2 單部AWS之穩態分析 94 4-3 單部AWS耦合線性永磁發電機連接獨立負載之穩態分 析 101 4-3-1 固定負載與不同波高下的波浪頻率掃描 101 4-3-2 固定波高與不同波浪週期下的負載掃描 113 4-4 單部AWS耦合線性永磁發電機透過電力電子設備連接 獨立負載之穩態分析 124 4-4-1 前端VSC於最大功率追蹤控制與不同波高下的波 浪頻率掃描 124 4-4-2 前端VSC於固定波高與不同波浪週期下的負載掃 描 138 4-4-3 後端VSI連接不同獨立負載的穩態分析 150 4-5 單部AWS耦合線性永磁發電機透過電力電子設備併聯 電網之穩態分析 159 第五章 系統的動態分析 167 5-1 前言 167 5-2 單部AWS之動態分析 168 5-3 單部AWS耦合線性永磁發電機連接獨立負載之動態分 析 171 5-3-1 波浪波高改變之動態分析 171 5-3-2 波浪週期改變之動態分析 175 5-3-3 獨立負載改變之動態分析 178 5-4 單部AWS耦合線性永磁發電機透過電力電子設備連接 獨立負載之動態分析 181 5-4-1 波浪波高改變之動態分析 181 5-4-2 波浪週期改變之動態分析 186 5-4-3 獨立負載改變之動態分析 192 5-5 單部AWS耦合線性永磁發電機透過電力電子設備併聯 電網之動態分析 201 5-5-1 波浪高度改變之動態分析 201 5-5-2 波浪週期改變之動態分析 208 5-5-3 併接點三相短路故障之動態分析 215 5-5-4 無限匯流排電壓驟降之動態分析 221 第六章 相位補償控制器之設計及其對系統的影響 227 6-1 前言 227 6-2 極點安置法與相位補償器介紹 227 6-3 含與不含相位補償器的穩態分析比較 231 6-4 含與不含相位補償器的暫態分析比較 235 第七章 結論與未來研究方向 240 7-1 結論 240 7-2 未來研究方向 244 參考文獻 246 作者簡介 251 附錄 252

    [1] I. A. Ivanova, O. Agren, H. Bernhoff, and M.
    Leijon, “Simulation of wave-energy converter with
    octagonal linear generator,” IEEE Journal of Oceanic
    Engineering, vol. 30, no. 3, pp. 619-629, July 2005.
    [2] K. Stowe, Exploring Ocean Science, New York: John
    Wiley, 1996.
    [3]http://home.c2i.net/soma_ingebrigtsen/public_html/oseanografi/ Bolger/ definisjoner.htm#bolgelengde, retrieve date: July 2, 2010.
    [4] L. Mats, B. Hans, B. Marcus, and Å. Olov, “Economical
    considerations of renewable electric energy production-
    especially development of wave energy,” Renewable
    Energy, vol. 28, no. 8, pp. 1201-1209, July 2003.
    [5] 經濟部能源局,能源產業技術白皮書,民國九十九年。
    [6] 邱逢琛,海洋能科技中長程發展規劃先期研究報告,台灣海洋科技研究中
    心,民國九十八年十二月。
    [7] 中央氣象局網頁。http://www.cwb.gov.tw/V6/index.htm,
    retrieve date: July 2, 2010.
    [8] 陳贊家,波浪能發電系統之特性分析,國立成功大學電機工程學系碩士論
    文,民國九十七年七月。
    [9] A. Muetze and J. G. Vining, “Ocean wave energy
    conversion-a survey,” IEEE Industry Applications
    Conference, Tampa, FL, USA, pp. 1410-1417, October 8-
    12, 2006.
    [10] Introduction to Pelamis.
    http://www.crses.sun.ac.za/html/wave.htm, retrieve
    date: July 2, 2010.
    [11] Introduction to PowerBuoy.
    http://www.oceanpowertechnologies.com, retrieve date:
    July 2, 2010.
    [12] Introduction to Wave Dragon.
    http://www.wavedragon.net, retrieve date: July 2, 2010.
    [13] Introduction to AWS. http://www.awsocean.com, retrieve
    date: July 2, 2010.
    [14] J. S. da Costa, A. Sarmento, F. Gardner, P. Beirao,
    and A. B. Melo, “Time domain model of the AWS wave
    energy converter,” in Proc. 2005 European Wave and
    Tidal Energy Conference, Glasgow, UK, pp. 91-98,
    August 29-September 2, 2005.
    [15] M. G. D. S. Prado, F. Gardner, M. Damen, and H.
    Polinder, “Modelling and test results of the
    Archimedes Wave Swing,” Journal of Power and Energy,
    vol. 220, no. 8, pp. 855-868, 2006.
    [16] K. Rhinefrank, E. B. Agrmloh, A. von Jouanne, A. K.
    Wallace, J. Prudell, K. Kimble, J. Aills, E. Schmidt,
    P. Chan, B. Sweeny, and A. Schacher, “Novel ocean
    energy permanent magnet linear generator buoy,”
    Renewable Energy, vol. 31, no. 9, pp. 1279-1298, July
    2006.
    [17] B. Das and B. C. Pal, “Voltage control performance of
    AWS connected for grid operation,” IEEE Trans. Energy
    Conversion, vol. 21, no. 2, pp. 353-361, June 2006.
    [18] J. S. da Costa, P. Beirao, and D. Valerio, “Internal
    model control applied to the Archimedes Wave Swing,”
    in Proc. 2007 International Conference and Control
    Systems and Computer Science, Bucharest, Republic of
    Romania, 2007.
    [19] J. K. H. Shek, D. E. Macpherson, M. A. Mueller, and J.
    Xiang, “Reaction force control of a linear electrical
    generator for direct drive conversion,” IET Renewable
    Power Generation, vol. 1, no. 1, pp. 17-24, February
    2007.
    [20] D. M. Joseph and W. A. Cronje, “Design and analysis of
    a double-sided tubular linear synchronous generator
    with particular application to wave-energy
    conversion,” in Proc. 2007 IEEE Power Engineering
    Society Conference and Exposition, Johannesburg, South
    Africa, pp. 1-8, July 16-20, 2007.
    [21] F. Wu, X. P. Ping, P. Ju, and M. J. H.
    Sterling, “Modeling and control of AWS-based wave
    energy conversion system integrated into power grid,”
    IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-
    1240, August 2008.
    [22] Z. Nie, P. C. J. Clifton, and R. A. McMahon, “Wave
    energy emulator and AC/DC rectifiers for direct drive
    wave energy converters,” in Proc. 2008 IET Conference
    on Power Electronics, Machines and Drives, York, UK,
    pp. 71-75, April 2-4, 2008.
    [23] L. N. Tutelea, M. C. Kim, M. Topor, J. Lee, and I.
    Boldea, “Linear permanent magnet oscillatory machine:
    Comprehensive modeling for transients with validation
    by experiments,” IEEE Trans. Industrial Electronics,
    vol. 55, no. 2, pp. 492-500, February 2008.
    [24] C. Ghita, A.-I. Chirila, I.-D. Deaconu, V. Navrapescu,
    and D. I. Ilina, “Numerical modeling of the electric
    linear generators based on the sea waves energy,” in
    Proc. 2008 IEEE Mediterranean Electrotechnical
    Conference, Ajaccio, France, pp. 640-645, May 5-7,
    2008.
    [25] R. B. Ummaneni, J. E. Brennvall, and R.
    Nilssen, “Convert low frequency energy from wave power
    plant to high frequency energy in linear electrical
    generator with gas springs,” in Proc. 2008
    International Conference on Power System Technology
    and IEEE Power India Conference, New Delhi, India, pp.
    1-5, October 12-15, 2008.
    [26] N. M. Kimoulakis, A. G. Kladas, and J. A.
    Tegopoulos, “Power generation optimization from sea
    waves by using permanent magnet linear generator
    drive,” IEEE Trans. Magnetics, vol. 44, no. 6, pp.
    1530-1533, June 2008.
    [27] J. Faiz and M. Ebrahimi-Salari, “Design and simulation
    of a 250 kW linear permanent magnet generator for wave
    energy to electric energy conversion in caspian sea,”
    in Proc. 2009 International Conference on Sustainable
    Power Generation and Supply, Nanjing, China, pp. 1- 6,
    April 6-7, 2009.
    [28] J. Vining, T. A. Lipo, and G. Venkataramanan, “Design
    and optimization of a novel hybrid
    transverse/longitudinal flux, wound-field machine for
    ocean wave energy conversion,” in Proc. 2009 IEEE
    Energy Conversion Congress and Exposition, San Jose,
    CA, USA, pp. 3726-3733, September 20-24, 2009.
    [29] F. Wu, X. P. Ping, P. Ju, and M. J. H.
    Sterling, “Optimal control for AWS-based wave energy
    conversion system,” IEEE Trans. Power Systems, vol.
    24, no. 4, pp. 1747-1755, November 2009.
    [30] A. Pirisi, G. Gruosso, and R. E. Zich, “Novel modeling
    design of three phase tubular permanent magnet linear
    generator for marine applications,” in Proc. 2009
    International Conference on Power Engineering, Energy
    and Electrical Drives, Lisbon, Portugal, pp. 78-83,
    March 18-20, 2009.
    [31] N. M. Kimoulakis, A. G. Kladas, and J. A.
    Tegopoulos, “Cogging force minimization in a coupled
    permanent magnet linear generator for sea wave energy
    extraction applications,” IEEE Trans. Magnetics, vol.
    45, no. 3, pp. 1246-1249, March 2009.
    [32] 磁性材料,維基百科。http://zh.wikipedia.org/zh-tw/鐵磁性材
    料 retrieve date: July 2, 2010.
    [33] 黃昌圳,有限元素法在電機工程的應用,全華科技圖書股份有限公司,
    民國九十四年十月。
    [34] FlexPDE 6, Reference Manual, December 20, 2008.
    [35] J. F. Wilson, B. J. Muga, and L. C. Reese, Dynamic of
    Offshore Structures, Hoboken, New Jersey: Sons, 2003.
    [36] J. Falnes, Ocean Waves and Oscillating Systems,
    Cambridge, United Kingdom: Cambridge University Press,
    2002.
    [37] C. E. Miller, A. van Zyl, and C. F. Landy, “Modelling
    a permanent magnet linear synchronous motor for
    control purposes,” in Proc. 2002 IEEE Africon
    Conference, Africa, vol. 2, pp. 671-674, October 2-4,
    2002.
    [38] P. C. Krause, Analysis of Electric Machinery, New
    York: McGraw-Hill, 1994.
    [39] C. M. Ong, Dynamic Simulation of Electric Machinery,
    Taiwan: Pearson Education, 2005.
    [40] P. M. Anderson and A. A. Fouad, Power System Control
    and Stability, Iowa: The Iowa State University Press,
    Ames, 1977.

    下載圖示 校內:2013-08-27公開
    校外:2013-08-27公開
    QR CODE