簡易檢索 / 詳目顯示

研究生: 王世豪
Wang, Shih-Hao
論文名稱: 新穎式燒結對於(Ba,Ca)(Ti,Zr)O3積層陶瓷電容器之研究
Studies on (Ba,Ca)(Ti,Zr)O3-based Multilayer Ceramic Capacitor by Novel Sintering Approach
指導教授: 李文熙
Lee, Wen-Shi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 142
中文關鍵詞: 電極連續性快速升溫抑制燒結非殼核結構
外文關鍵詞: electrode continuity, rapid heating, constrained sintering, non-core-shell
相關次數: 點閱:207下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著積層陶瓷電容器邁向小型化發展已經是未來的趨勢,由於元件尺寸小型化,介電層厚度及電極厚度也必須跟著降低,以介電層為1μm為例,其電極厚度約在0.8μm左右,由於過薄的內電極厚度在燒結過程中易容易因為camber效應導致有不連續情況產生,因此快速升溫方法將被引用,利用快速通過不同材料之起始收縮溫度點,降低陶瓷與電極間的收縮不匹配性,進而提高內電極收縮率。雖然快速升溫可以有效改善電極連續性,但對於將電極薄層化尚未得到改善,我們期望搭配抑制燒結方式,一方面利用抑制層與被抑制層間產生的摩擦力,抑制積層陶瓷電容器之X-Y方向平面的收縮,另一方面由於抑制燒結方式,整體元件大部分收縮率將被集中在Z軸方向上,如此便可在x-y方向不收縮下提高電極連續性,又進一步將電極薄層化。此外,根據前人研究指出,抑制燒結可有效改善元件內部晶粒尺寸變化,但其缺點為造成凹型的外觀。因此本研究中,一種新穎式的燒結方式將被提出,結合快速升溫與抑制燒結方式對於(Ba,Ca)(Ti,Zr)O3之積層陶瓷電容器之研究,在此對於採用升溫速率和抑制燒結條件下,無凹型的外觀積層陶瓷電容器可被成功製作出,且內部的電極連續性和微結構變化將被詳細討論。根據結果顯示,透過快速升溫搭配抑制燒結的方式(Ba,Ca)(Ti,Zr)O3-based之積層式陶瓷電容器的內電極連續性可高達98%且平均厚度小於1μm,在微結構方面除了其內部晶粒均勻分佈外,平均晶粒大小可控制在1.5±0.1μm。
    銅電極有較低的電阻係數且在高頻訊號傳輸上具有低等校串聯電阻和優越的高頻率特性,但由於銅電極溶點遠低於鎳,故其材料相對燒結溫度也必須大幅降低。此外,降低材料燒結溫度對於陶瓷體內部殘留應力有極大幫助,因此我們進一步將(Ba,Ca)(Ti,Zr)O3 添加Li2CO3和SiO2當燒結助劑,並成功在1050度與銅電極共燒,其低溫系統材料介電常數可達9500以上、介電損失為23×10-4、絕緣電阻可到達1.2×1012Ω,然而過量的Li2CO3含量添加將會導致 Ba1.55Ca0.45SiO4的二次相生成,進而影響整體(Ba,Ca)(Ti,Zr)O3材料之介電特性,造成介電常數和絕緣電阻的下降並增加材料的介電損失。此外,文中也提及在銅電極與陶瓷體間在燒結過程中之介面反應,我們利用背相電子顯微鏡和線掃瞄偵測銅電極擴散情況。此外,進一步將可低溫燒結的(Ba,Ca)(Ti,Zr)O3材料製作成與銅內電極共燒並搭配快速升溫與抑制燒結條件,在低溫燒結下達到高的電極連續性與均勻的晶粒分佈情況,經過實驗結果,在搭配抑制燒結和快速升溫下,具有銅內電極之積層陶瓷電容器元件,其內電極連續性可高達98%,均勻晶粒分佈情況可被實現,平均晶粒大小被控制在0.75±0.1μm。
    在追求高介電常數下,具備高穩定的電容溫度係數特性也同樣重要,在介電薄層化趨勢下,存在於介電層間的晶粒尺寸不但要下降且晶粒數量也必須跟著減少,因此兩種問題將被呈現出。一方面為晶粒尺寸下降導致材料介電常數也大幅被減少,導致要製作出高電容量的積層陶瓷電容器方向相互矛盾。另一方面為在減少的晶粒數量存在於介電層中,此結果最終將導致積層陶瓷電容器元件的可靠度壽命降低。一般來說,以殼核結構之具有高穩定性的溫度介電曲線情況下,存在於介電層中的晶粒至少約5-6顆才能有效抵擋直流偏壓能力。基於此,本研究提出利用新穎式燒結方式製作出非殼核結構之晶粒,其一在利用抑制層和介電層間的不匹配性可以有效抑制晶粒成長,進而將(Ba,Ca)(Ti,Zr)O3之電容溫度係數從Y5V抑制到X5R。其二在薄層化的介電層中,因核部分是由高介電常數且低電阻特性的純BaTiO3材料所構成,殼部分則是由高電阻特性之BaTiO3材料與其它微量添加化合物所構成,故只有殼部分可承受較高的直流偏壓,而本研究利用新穎式燒結製作出非殼核結構之晶粒,在可靠度的實驗測試下,證明只需2-3顆晶粒下便可以有效抵擋直流偏壓能力。

    The multilayer ceramic capacitors (MLCCs) have been progressively miniaturized in recent years. In order to achieve high capacitance for a small size MLCC, the thickness of electrode and dielectric layer must be simultaneously decreased. However, the miniaturization of Ni–BaTiO3 multilayer ceramic capacitors (MLCCs) offers a variety of challenges to the capacitor industry in the areas of particulate materials, dielectric compositions, and manufacturing technology. Currently, one of the main problems arising in the processing of ultrathin, base-metal electrode MLCCs with dielectric and electrode layer thicknesses around 1 mm or less is the microstructural evolution of the electrode layers during co-sintering, which leads to electrode discontinuities. Therefore, the rapid heating rate was adopted to fire the BaTiO3-based MLCCs in order to reduce the shrinkage mismatch by quick passage through the different onset temperature between the dielectric material and the inner electrode. Though rapid heating can effectively improve the inner electrode continuity, the thinning inner electrode has not yet been solved.
    Using the constraining layer laminated on the MLCCs, the friction force between constraining layer and constrained layer are generated, which can reduce the shrinkage rate in X-Y direction and then the overall shrinkage will be concentrated on the Z direction. Both the residual stress can be minimized and the homogeneity of grain size can be obtained. Therefore, we expect a novel sintering approach by combination of constrained sintering with rapid heating rate can obtain both high electrode continuity and thinner electrode layer thickness of MLCCs
    . In this studies, the thin inner electrode (<1μm) with high continuity (>98%) and the fine grain size (1.5μm) with narrow distribution (±0.1μm) of (Ba,Ca)(Ti,Zr)O3-based MLCCs with a concave-free morphology can be attained by using a rapid constrained sintering technique.
    In comparison with Ni electrode, the Cu electrode has better conductivity. As expected, the electrical performance of Cu-MLCCs is superior to that of Ni-MLCCs, especially for the high Q and low ESR properties. However, the melt temperature of Cu is lower and around 1086C, the sintering temperature of (Ba,Ca)(Ti,Zr)O3 dielectric has to be reduced by using SiO2 and Li2CO3 as sintering aids. The contents of SiO2 and Li2CO3 are studied to achieve the optimum dielectric characteristics such as dielectric constant of up to 9500, low dielectric loss of 23×10-4 and high insulation resistance of up to 1.2×1012Ω. By the precise control of the thickness of constraining layer and heating rate, the Cu inner electrode with high continuity (98%) and fine grain size (0.75μm) with narrow distribution (±0.1μm) of (Ba,Ca)(Ti,Zr)O3-based MLCCs can be attained by using a rapid constrained sintering technique.
    In order to pursue high dielectric constant, having stable temperature coefficient of capacitance of MLCCs is also an important issue. A (Ba,Ca)(Ti,Zr) O3-based MLCC with X5R temperature characteristic (C/C  15% within –55 to 85C) was attained by using a novel sintering technique. It has been demonstrated that the grain size of (Ba,Ca)(Ti,Zr)O3-based MLCCs is inhibited by the novel sintering approach so that a non-core-shell microstructure of (Ba,Ca)(Ti,Zr)O3-based MLCCs to meet X5R temperature characteristic can be obtained. In comparison with conventional X5R BaTiO3-base dielectric with core-shell, the novel X5R (Ba,Ca)(Ti,Zr)O3 base dielectric with non-core-shell shows very promising performance especially for high dielectric constant and long lifetime, which are very important characteristics for a dielectric materials to further pursuit a super high capacitance of MLCC.

    Contents 摘要 I Abstract Ⅲ Acknowledgements VI Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Issue of high capacitance of MLCCs 4 1.2 Motivation 7 Chapter 2 Overviews:Theory and techniques of (Ba,Ca)(Ti,Zr)O3-based MLCCs on the microstructure and sintering approach 13 2.1 Rapid heating sintering 13 2.2 Constrained sintering 16 2.3 Influence of grain size on the dielectric characteristic and reliability 20 2.4 Core-shell and non-core-shell structure 24 2.5 Residual stress 26 2.6 Low temperature sintering of (Ba,Ca)(Ti,Zr)O3 29 Chapter 3 Experiments 31 3.1 MLCCs process 31 3.2 Simple experiment flows 32 3.3 Measurement 32 3.3.1 Thermal mechanical analysis 32 3.3.2 Scanning electron microscope 32 3.3.3 Impedance analyzer 33 3.3.4 High resistance meter 33 3.3.5 XRD 33 3.3.6 Sintering fracture 33 3.3.7 Temperature coefficient of capacitance 33 3.3.8 Lifetime test 33 3.3.9 High resolution transmission electron microscopy 33 Chapter 4 A novel approach to sintering (Ba,Ca)(Ti,Zr)O3 multilayer ceramic capacitors with Ni electrodes 35 4.1 Introduction and motivation 35 4.2 Experimental procedures 36 4.3 Results and discussion 37 4.3.1 Shrinkage rate and camber development 37 4.3.2 Residual stress measurement 45 4.3.3 Inner electrode continuity 52 4.3.4 Microstructure of BCTZ-based MLCC fired by free and constrained sintering 60 4.4 Conclusion 65 Chapter 5 Dielectric properties of (Ba,Ca)(Ti,Zr)O3 base MLCC novel cofired with Ni by free and constrained sintering 66 5.1 Introduction and motivation 66 5.2 Results and discussion 66 5.3 Conclusion 73 Chapter 6 Study on (Ba,Ca)(Ti,Zr)O3 Dielectric Cofired with Copper Electrode 74 6.1 Introduction and motivation 74 6.2 Experimental procedure 75 6.3 Results and discussion 76 6.3.1 Shrinkage, density, XRD, and microstructure analyses 76 6.3.2 Dielectric property analysis 82 6.3.3 TEM microstructure analysis and diffusion reaction between electrode and dielectric 87 6.4 Conclusion 91 Chapter 7 A novel approach to sintering (Ba,Ca)(Ti,Zr)O3 multilayer ceramic capacitors with Cu electrodes 92 7.1 Introduction and motivation 92 7.2 Experimental procedure 92 7.3 Results and discussion 93 7.3.1 TMA curve and shrinkage rate 93 7.3.2 Inner electrode continuity of (Ba,Ca)(Ti,Zr)O3-based MLCCs fired by free sintering and constrained sintering 98 7.3.3 Microstructure of (Ba,Ca)(Ti,Zr)O3-based MLCCs fired by free sintering and constrained sintering 102 7.4 Conclusion 104 Chapter 8 Stable temperature dielectrics of (Ba,Ca)(Ti,Zr)O3-based MLCCs with non-core-shell structure by novel sintering approach 105 8.1 Introduction and motivation 105 8.2 Experimental procedure 106 8.3 Results and discussion 107 8.3.1 Shrinkage rate and microstructure of BCTZ-based MLCCs 107 8.3.2 Dielectric properties of BCTZ-based MLCCs 110 8.3.3 IR and lifetime test of BCTZ-based MLCCs 116 8.4 Conclusion 119 Chapter 9 A novel X5R multilayer ceramic capacitor based on (Ba,Ca)(Ti,Zr)O3 dielectric with non-core-shell structure 120 9.1 Introduction and motivation 120 9.2 Experimental procedure 121 9.3 Results and discussion 122 9.4 Conclusion 128 Chapter 10 Conclusion 129 References 131

    [1] C. Pithan, D. Henning and R. Waser, "Progress in the synthesis of nanocrystalline BaTiO3
    powders for MLCC," International Journal of Applied Ceramic Technology, vol. 2, pp. 1-14,
    2005.
    [2] Information Meeting 2011, Murata, 2011
    [3] M. Cannon, "Focus on Power: Advancements in Ceramic Capacitors," TDK Corporation of
    America, 2011.
    [4] D. H. Yoon and B. I. Lee, "Processing of barium titanate tapes with different binders for MLCC
    applications—part I: optimization using design of experiments," Journal of the European
    Ceramic Society, vol.24, pp.739–752, 2004.
    [5] Y. Isaka, H. Shiomi and K. Inaoka, "Effects of the amount of dispersant and Binder on
    slurry and sheet properties in aqueous tape casting of barium titanate," Journal of the Society of
    Materials Science, vol.6, pp.50-503, 2011.
    [6] V. Vinothini, P. Singh and M. Balasubramanian, "Optimization of barium titanate slip for tape
    casting," International Symposium of Research Students on Material Science and Engineering,
    2004.
    [7] S.W. Kwon, N. Darsono and D.H. Yoon, "Optimization of barium titanate slip for tape casting
    using design of experiments," Journal of the Korean Ceramic Society, vol. 43, pp.519-526,
    2006.
    [8] M. J. Pan and C.A. Randall, "A brief Introduction to Ceramic Capacitors," Electrical Insulation
    Magazine, IEEE, vol.26, pp.44-50, 2010.
    [9] U. Paik , V. A. Hackley , S. C. Choi and Y.G. Jung, "The effect of electrostatic repulsive forces
    on the stability of BaTiO3 particles suspended in non-aqueous media," Colloids and Surfaces
    A:Physicochcmical and Engineering Aspects, vol. 135, pp.77-88, 1998.
    [10] G.P. van der Beek, U. Gontermann-Gehl and E. Krafczyk, "Binder Distribution in Green
    Ceramic Fools," Journal of the European Ceramic Society, vol. 15, pp.741-758,
    1995.
    [11] K. Prabhakaran, A. Narayanan and C. Pavithran, "Cardanol as a dispersant plasticizer
    for an alumina/toluene tape casting slip," Journal of the European Ceramic Society,
    vol. 21, pp.2873-2878, 2001.
    [12] A. V. Polotai, T. H. Jeong, G.-Y. Yang, E. C. Dickey, C. A. Randall, P. Pinceloup and A. S.
    Gurav, "Effect of Cr additions on the microstructural stability of Ni electrodes in ultra-thin
    BaTiO3 multilayer capacitors," Journal of Electroceramics, vol. 18, pp 261-268, 2007.
    [13] D.P. Shay, G.Y. Yang, E.C. Dickey and C.A Randall, "Stability of Ni electrodes and
    Ni-BaTiO3 interface evolution in ultrathin BME MLCCs," Applications of
    Ferroelectrics, pp.1-2, 2008.
    [14] R. Ueyama, T. Ando, T. Mormitsu and Y. Hashizume, "Preparation and evaluation of
    next-generation Ni multilayer ceramic chip capacitor electrode using Ni flake powder," Journal
    of the Ceramic Society of Japan, vol. 115, pp.65-68, 2007.
    [15] Y. Pu, W. Chen, S. Chen and Hans T. Langhammer, "Microstructure and dielectric
    properties of dysprosium-doped barium titanate ceramics," Cerâmica, vol. 51, 2005.
    [16] F. P. Zhang, H.L. He, J.-M. Du, H.Y. Wang and G. M. Liu, "Influence of grain size on
    breakdown voltage of PZT95/5 ferroelectric ceramics under shock compression," Journal of
    Inorganic Materials, vol. 20,2004.
    [17] A. Branwood, J. D. Hurd and R. H. Tredgold, "Dielectric breakdown in barium titanate,"
    Br. J. Appl. Phys, vol. 13, pp.10, 1962.
    [18] X. H. Wang, R. Chen, Z. Gui and L. Li, "Synthesis and properties of barium titanate based
    X7R ceramics by chemical method," Ferroelectrics, vol. 262, 2001.
    [19] H. Y. Lee, K. H. Cho and H. D. Nam, "Grain size and temperature dependence of electrical
    breakdown in BaTiO3 Ceramic," Ferroelectrics, vol. 334, pp.165-169, 2006.
    [21] J.S. Lee, M. S. Choi, N. V.Hung, Y. S. Kim, l. W. Kim, E. C. Park, S. J. Jeong and J. S. Song,
    "Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of
    PZT-based ceramics," Ceramics International, vol. 33, pp.1283-1286, 2007.
    [22] C. Liu and P. Liu, "Microstructure and dielectric properties of BST ceramics
    derived from high-energy ball-milling," Journal of Alloys and Compounds, Journal of
    Alloys and Compounds vol.584, pp.114–118, 2014.
    [23] K. I. Othman, A. A. Hassan, M. E. Ali, S. M. El-Raghy, R. Abdelkarim, O. A. A. Abdelal and
    F. El-Zhraa, "Effect of high energy milling on the preparation and properties of barium
    titanate," Arab Journal of Nuclear Science and Applications, vol. 45, pp.335-343, 2012.
    [24] D. Xu, D. M. Tang, L. Jiao, H.M. Yuan, G. P. Zhao and X.N. Cheng, "Effects of high-energy
    ball milling oxide-doped and varistor ceramic powder on ZnO varistor," Trans. Nonferrous
    Met. Soc. China vol.22, pp.1423-1431, 2012.
    [25] A. J. Moulson and J. M. Herbert, Electroceramics Materials Properties Applications,
    Chapman & Hall, New York, 1990.
    [26] G. Shirane, F. Jona, and R. Pepinsky, "Some aspects of ferroelectricity," Proc. IRE
    vol.43, pp1738-1793, 1955.
    [27] B. Jaffe, W. Jr. Cook and H. Jaffe, Piezoelectric. Ceramics, Academic Press,
    New York, 1971.
    [28] D. F. K. Hennings and H. Schreinemacher, "Ca-Acceptors in Dielectric Ceramics
    Sintered in Reductive Atmospheres," J. Europ. Ceram. Soc., vol. 15, pp.795-800,
    1995.
    [29] T. F. Lin, J. L. Lin, C. T. Hu and I. Ni. Lin, "The microstructure developments and
    electrical properties of calcium-modified barium titanate ceramics," J. Mater. Sci.,
    vol. 26, pp.491-496, 1991.
    [30] D. Voltzke and H. P. Abich, "Investigations related to the incorporation of Ca2+ ions
    into the BaTiO3 lattice," J. Mater. Sci., vol. 30, pp.4896-4900, 1995.
    [31] T. F. Lin, J. L. Lin, C. T. Hu and I. Ni. Lin, "Influence of CaO addition on the
    electrical properties of BaTiO3ceramics," vol. 67, pp.1042-1047, 1990.
    [32] M. Ceh and D. Kolar, "Solubility of calcium oxide in barium titanate," Mater. Res.
    Bull., vol. 29, pp.269-275, 1994.
    [33] Y. C. Lee , W. S. Lee and F. S. Shieu, "Development of composite dielectrics with
    high specific capacitance and stable temperature characteristics," Journal of
    Materials Science, vol. 37, pp.2699-2705, 2002.
    [34] D. Hennings and A. Schnell, "Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)03
    ceramics," Journal of the American Ceramic Society, vol. 65, pp.539-544, 1982.
    [35] T. R. Armstrong, R. C. Ruchanan, "Influence of core-shell grains on the internal
    stress state and permittivity response of zirconia modified barium titanate," J. Am.
    Ceram. Soc, vol. 5, pp.1268-1273, 1990.
    [36] V. Paunovic, L. Živkovic, L. Vracar, V. Mitic and M. Miljkovic, "The effects of additive on
    microstructure and electrical properties of BaTiO3 ceramics," Serbian Journal of Electrical
    Engineering, vol.1, pp.89-98, 2004.
    [37] D. F.K. Hennings, " Dielectric materials for sintering in reducing atmospheres,"
    Journal of the European Ceramic Society, vol.21, pp.1637-1642, 2001.
    [38] P. Hansen, D. Hennings and H. Schreinemacher, "Dielectric properties of acceptor-doped
    (Ba,Ca)(Ti,Zr)O3 ceramics," Journal of Electroceramics vol.2, pp.85-94, 1998.
    [39] C.S. Chiang, Y.C. Lee, F. S. Shieu, W. H.Lee, D. Hennings, "Effect of TiO2 doped Ni
    electrodes on the dielectric properties and microstructures of (Ba0.96Ca 0.04)(Ti 0.85Zr 0.15)O3
    multilayer ceramic capacitors," Journal of the European Ceramic Society, pp.865-873, 2012.
    [40] Y. C. Lee and C. S. Chiang, "High dielectric constant of (Ba 0.96Ca 0.04)(Ti0.85Zr 0.15)O3
    multilayer ceramic capacitors with Cu doped Ni electrodes," Journal of Alloys and
    Compounds, pp.6973-6979, 2011.
    [41] M.M. Samantaray, A. Gurav, E. C. Dickey and C. A. Randall, "Electrode defects in multilayer
    capacitors part I: modeling the effect of electrode roughness and porosity on electricfield
    enhancement and leakage current," J. Am. Ceram. Soc.Society, vol. 95, pp257-263, 2012.
    [42] M. M. Samantaray, A. Gurav, E. C. Dickey and C. A. Randall, "Electrode defects in multilayer
    capacitors part II: finite element analysis of local field enhancement and leakage current in
    three-dimensional microstructures," J. Am. Ceram. Soc.Society, vol. 95, pp.264-268, 2012.
    [43] J. H. Jean, and C. R. Chang, "Effect of densification mismatch on camber development during
    cofiring of nickel-based multilayer ceramic capacitors," J. Am. Ceram. Soc., vol, 9,
    pp.2401-2406, 1997.
    [44] A. V. Polotai, G. Y. Yang, E. C. Dickey and C. A. Randall, "Utilization of multiple-stage
    sintering to control Ni electrode continuity in ultrathin Ni–BaTiO3 multilayer capacitors," J.
    Am. Ceram. Soc., vol. 12, pp. 3811–3817, 2007.
    [45] T. Rabe, W. A. Schiller, T. Hochheimer, C.Modes and A. Kipka, " Zero shrinkage of LTCC by
    self-constrained sintering," International Journal of Applied Ceramic Technology, vol.5,
    pp.374–382 , 2005.
    [46] R. Zuo, E. Aulbach and J. Rodel, "Shrinkage-free sintering of low-temperature cofired
    ceramics by loading dilatometry," J. Am. Ceram. Soc.Society, vol. 87, pp.526–28, 2004.
    [47] Y. C. Lin and J. H. Jean, "Constrained densification kinetics of alumina/borosilicate
    blass + alumina/alumina sandwich structure," J. Am. Ceram. Soc.Society, vol.
    85, pp.150-154, 2002.
    [48] C. H. Liao, J. H. Jean and Y. Y. Hung, "Self-constrained sintering of a multilayer
    low temperature cofired glass-ceramics/alumina laminate," J. Am. Ceram. Soc.
    Society, vol. 91, pp 648-651, 2008.
    [49] W. H. Lee and C.Y. Su, "Improvement in the temperature stability of a BaTiO3-sased
    multilayer ceramic capacitor by constrained sintering," J. Am. Ceram. Soc.
    Society, vol. 90, pp. 3345-3348, 2007.
    [550] W. H. Lee, W. T. Chen and Y. C. Lee, "Performance enhancement of ZnO-based multilayer
    varistor by constrained sintering," Journal of the American Ceramic, vol. 91, pp. 2938–2942,
    2008.
    [51] W. R. Buessem, L. E. Cross and A. K. Goswami, "Phenomenologicla theory of high
    permittivity in fine-grained barium titanate," J. Am. Ceram. Soc., vol. 49,
    pp.33-36, 1966.
    [52] G. Arlt, D. Hennings and G. de With, "Dielectric properties of fine-grained barium
    titanate," J. Appl. Phys., vol. 58, pp. 1619-1625, 1985.
    [53] W. Luan, L. Gao and J. Guo "Size effect on dielectric properties of fine-grained BaTiO3
    ceramics," Ceramics International, vol. 25, pp. 727-729, 1999.
    [54] T. Kanata, T. Yoshikawa and K. Kubota, "Grain-size effects on dielectric phase
    transition of BaTiO3 ceramics," Solid State Communications, Vol. 62, pp. 765–767,
    1987.
    [55] M. Kahn, "Influence of grain growth on dielectric properties of Nb-doped BaTiO3," J. Am.
    Ceram. Soc., vol. 54. pp. 455-457, 1971.
    [56] T. R. Armstrong, L. E. Morgens, A. K. Maurice and R. C. Buchanan, "Effects of
    zirconia on microstructure and dielectric properties of barium titanate ceramics," J.
    Am. Ceram. Soc., vol. 72. pp. 605-611, 1989.
    [57] H. Y. Lu, J. S. Bow and W. H. Deng, "Core-shell structure in ZrO2-modified BaTiO3
    ceramics," J. Am. Ceram. Soc., vol. 73. pp. 3562-3568, 1990.
    [58] G. Liu, X. Wang, Y. Lin, L. T. Li and C. W. Nan, "Growth kinetics of
    core-shell-structured grains and dielectric constant in rare-earth doped BaTiO3
    ceramics," J. Appl. Phy., vol.98, pp. 044105-6, 2005.
    [59] D. E. McCauley, M. S. H. Chu and M. H. Megherhi, "PO2 dependence of the diffuse-phase
    transition in base metal capacitor dielectrics," J. Am. Ceram. Soc., vol. 89, pp. 193–201, 2006.
    [60] Y. Nakano, T. Nomura and T. Takenaka, "Number of dielectric layers dependence of dielectric
    properties and residual stress of multilayer ceramic capacitors with Ni electrodes," Japanese
    Journal of Applied Physics, vol. 43, pp. 5398-5403, 2004.
    [61] Yukie Nakano, Takeshi Nomura and T. Takenaka, "Residual stress of multilayer ceramic
    capacitors with Ni-electrodes (Ni-MLCCs)," Jpn. J. Appl. Phys. vol.42, pp.6041-6044, 2003.
    [62] Y. C. Lee, C. W. Lin, W. H. Lu, W. J. Chen and W. H. Lee, "Influence of SiO2 addition on the
    dielectric properties and microstructure of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 Ceramics," Int. J. Appl.
    Ceram. Technol., vol. 6, pp. 692-701, 2009.
    [63] Q. Li, J. Qi, Y. Wang, Z. Gui and L. Li, "Improvement of temperature-stable BaTiO3-based
    dielectrics by addition of Li2CO3 and Co2O3," Journal of European Ceramic Society, vo. 21,
    pp. 2217-2220, 2001.
    [64] D. R. Clarke, "Varistor Ceramics," J. Am. Ceram. Soc., vol.82, pp.485–502, 1999.
    [65] L. Levinson and H. Philipp, "Zinc oxide varistors - A review," Ceramic Bulletin, Vol. 65,
    1986.
    [66] T. Rabe, M. Gemeinert, W. A. Schiller, "Development of advanced low temperature co-fired
    ceramics (LTCC)," Key Engineering Materials, vol. 264-268, pp.1181-1184, 2004.
    [67] W. H. Lee, W. T. Chen and C.Y. Su, "Attaining a homogeneous microstructure of a
    ZnO-Based multilayer varistor by constrained sintering," J. Am. Ceram. Soc., vol. 10, pp.
    3296-3298, 2007.
    [68] M. Harmer, E. W. Roberts, and R. J. Brook, " Rapid sintering of pure and doped
    alpha-Al2O3", Trans. J. Br. Ceram. Soc., vol. 78, pp. 22-25, 1979.
    [69] G. Q. Lu, R. C. Sutterlin and T. K. Gupta, "Effect of mismatched sintering kinetics
    on camber in a low temperature cofired ceramic package," J. Am. Ceram. Soc., vol. 76, pp.
    1907-1914, 1993.
    [70] M.Y. Chu and ,M.N. Rahaman, L.C. Dejonghe and R.J. Brook, "Effect of heating rate on
    sintering and coarsening," J. Am. Ceram. Soc., vol. 74, pp.1217-1225, 1991.
    [71] J. H. Jean and C.R. Chang, "Cofiring kinetics and mechanisms of an Ag-metallized
    ceramic-filled glass electronic package," J. Am. Ceram. Soc., vol. 80, pp. 3084-3092, 1997.
    [72] K. Saito and H. Chazono, " Stress and electrical field responses of X5R type multilayer
    ceramic capacitor with Ni internal electrode," Jpn. J. Appl. Phys. vol. 42, pp. 6045-6049, 2003.
    [73] S. Y. Tzeng and J. H. Jean., "Stress development during constrained sintering of
    alumina/glass/alumina sandwich structure," J. Am. Ceram. Soc., vol. 85, pp. 335-340, 2002.
    [74] Y. Nakano, T. Nomura and T. Takenaka, "Residual stress of multilayer ceramic capacitor with
    Ni-electrodes (Ni-MLCCs)," Jpn. J. Appl. Phys. vol. 42, pp.6041-6044, 2003.
    [75] Y. Nakano, T. Nomura and T. Takenaka, "Number of dielectric layers dependence of dielectric
    properties and residual stress of multilayer ceramic capacitor with Ni electrodes," Jpn. J. Appl.
    Phys., vol. 42, pp.6041-6044, 200.
    [76] J. H. Jean, C.R. Chang and Z.C. Chen., "Effect of densification mismatch on camber
    development during cofiring of Nickel-based multilayer ceramic capacitor," J. Am. Ceram.
    Soc., vol. 80, pp. 2401-2406, 1997.
    [77] G. Yang, Z. Yue, T. Sun, W. Jiang, X. Li and L. Li, "Evaluation of residual stress in a
    multilayer ceramic capacitor and its effect on dielectric behavior under applied dc bias field,"
    J. Am. Ceram. Soc., vol. 91, pp.887-892, 2008.
    [78] P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained densification of alumina/zirconia
    hybrid laminates, II: viscoelastic stress computation," J. Am. Ceram. Soc., vol. 80, pp.
    1940-1948, 1997.
    [79] H. Chazono and H. Kishi, "DC-electrical degradation of the BT-based materials for multilayer
    ceramic capacitor with Ni internal electrode: impedance analysis and microstructure," Jpn. J.
    Appl. Phys. Part I- Regular Pap. Short Notes Rev. Pap., vol. 40, pp.5624-5629, 2001.
    [80] A.V. Polotai, I.Fujii, D. P. Shay, G. Y. Yang, E. C. Dickey and C. A. Randall, "Effect of heating
    rates during sintering on the electrical properties of ultra-thin Ni-BaTiO3 multilayer ceramic
    capacitor," J. Am. Ceram. Soc., vol. 91, pp.2540-2544, 2008.
    [81] P. Z. Cai, D. J. Green, and G. L. Messing, "Constrained densification of alumina/ zirconia
    hybrid laminates 1. experimental observation of processing defects," J. Am. Ceram. Soc.,
    vol.80, pp.1929-1939, 1997.
    [82] K. V. R. Prasad, A. R. Raju, K. B. R. Varma, ”Grain size effects on the dielectric properties of
    ferroelectric Bi2VO5.5 ceramics,” Journal of Materials Science, vol. 29, pp.2691-2696, 1994..
    [83] W. H. Lee, T. Y. Tseng and D. Hennings, "Effects of A/B cation ratio on the microstructure and
    lifetime of (Ba1-xCax)z(Ti0.99-yZryMn0.01)O3 (BCTZM) sintered in reducing atmosphere,"
    Journal of Materials Science: Materials in Electronics, vol. 11, pp.157-162, 2000.
    [84] C. L. Chen, W. H. Lee and W. C. J. Wei, "Sintering behavior and interfacial analysis of Ni/Cu
    electrode with BaTiO3 particulates," Journal of Electroceramics, vol. 14, pp. 25-36, 2005.
    [85] P. Hansen, D. Hennings, H. Schreinemacher, "High-K dielectric ceramics from
    donor/acceptor-codoped (Ba1−xCax)(Ti1-yZry)O3 (BCTZ)," Journal of the American Ceramic
    Society, vol. 81, pp. 1369-1373, 1998.
    [86] S.Hisamitsu, K. Shinya, S. Hiroshi and K. Hiroshi, "Properties of Y5V multilayer ceramic
    capacitors with nickel electrodes," Japanese Journal of Applied Physics, vol. 32, pp. 4380,
    1993.
    [87] R. Chen, X. Wang, H. Wen, L. Li and Z. Gui, "Enhancement of dielectric properties by
    additions of Ni nano-particles to a X7R-type barium titanate ceramic matrix," vol. 30, pp.
    1271–1274, 2004.
    [88] T. Shinsuke and M. Youichi , "Effect ofinternal electrode materials in multilayer ceramic
    capacitors on electrical properties," Japanese Journal of Applied Physics, vol. 50, pp.
    09NC06-09NC06-5, 2011.
    [89] H. Kishi, Y. Mizuno and H. Chazono, "Base-metal electrode-multilayer ceramic capacitors:
    past, present and future perspectives," Japanese journal of applied physics, vol. 42, pp. 1-15,
    2003.
    [90] G. Desgardin, I. Mey and B. Raveau, "BaLiF3-a new sintering agent for BaTiO3-base
    capacitors," Am. Ceram. Soc. Bull., vol.64, pp. 564-570, 1985.
    [91] S. K. Sakar and M. L. Sharma, "Liquid phase sintering of BaTiO3 by boric oxide (B2O3) and
    lead borare (PbB2O4) glasses and its effect on dielectric strength and dielectric constant,"
    Mater. Res. Bull., vol. 24, pp.407-146, 2000.
    [92] Y. C. Lee, C. W. Lin, W. H. Lu, W. J. Chen, and W. H. Lee, "Influence of SiO2 addition on the
    dielectric properties and microstructure of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 ceramics," Int. J. Appl.
    Ceram. Technol., vol. 6, pp. 692-701, 2009.
    [93] K. V. R. Prasad, A. R. Raju, K. B. R. Varma, "Grain size effects on the dielectric properties of
    ferroelectric Bi2VO5.5 ceramics,” Journal of Materials Science, vol. 29, pp. 2691-2696, 1994.
    [94] C. H. CHOI, D. G. Chang, W. S. Kim, K. H. Hur and C.J. Choi, "Effect of Li2O-SiO2-xMO
    glass addition on the dielectric properties and microstructure of (Ba,Ca)(Ti,Zr)O3 for
    multilayer ceramic capacitors with nickel electrodes," Journal of the Korean Physical Society,
    vol.42, pp. S1017~S1020, 2003.
    [95] C. L. Hu, Y. C. Lee, and W. S. Lee, "100 mF super high multilayer ceramiccapacitor
    development and application," BME Multilayer Ceramic Technology—Materials, Process, and
    Market Seminar, National Taipei University of Technology, 2004.
    [96] T. Nomura and Y. Nakano, "Current topics in the field of materials technology of
    BME-MLCCs," Ceram. Trans., Recent Developments in Electronic Materials and Devices,
    pp.87–99, 2002.
    [97] D. Hennings, "Multilayer ceramic capacitors with base metal electrodes," pp. 135–138, vol. 1,
    Institute of Electrical and Electronics Engineers, New York, 2001.
    [98] M. S. Randall, A. S. Gurav, L. A. Mann, J. J. Beeson, M. Maguire, and R. J. Vaughan,
    "Thin layer BME-MLCC technology," 105th Annual Meeting of the American Ceramics
    Society, Nashville, pp. 27–30, 2003.
    [99] N. Wada, T. Hiramatsu, T. Tamura and Y. Sakabe "Investigation of grain boundaries influence
    on dielectric properties in fine-grained BaTiO3 ceramics without the core-shell structure,"
    ceramics International, vol. 34 pp. 933-937, 2008.
    [100] H. I. Hsiang and F. S. Yen, "Effect of crystallite size on the ferroelectric domain growth of
    ultrafine BaTiO3 powders," J. Am. Ceram. Soc., vol. 79, pp. 1053–1060, 1996.
    [101] S. F. Wang and G. O. Dayton, "Dielectric properties of fine-grained barium titanate based
    X7R materials," J. Am. Ceram. Soc., vol. 82, pp. 2677-2682, 1999.
    [102] L. Chen, X. Wang, B. Qiao, X. Deng, Z. Gui and L. Li, "Electrode-ceramic inter-diffusion of
    Ba(Ti,Zr)O3-based Y5V MLCCs with Ni electrodes," J. Am. Ceram. Soc., vol. 89, pp.
    3734-3738, 2006.

    下載圖示 校內:2015-12-19公開
    校外:2015-12-19公開
    QR CODE