簡易檢索 / 詳目顯示

研究生: 蔡恩明
Tsai, En-Ming
論文名稱: 基於極點配置的方法來設計線性多變數系統中的傳輸零點配置
Transmission Zero Assignment in Linear Multivariable System Using Pole Assignment Method
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 41
中文關鍵詞: 線性非時變多變數系統傳輸零點配置傳輸零點極點配置輸出回授矩陣直接傳輸項系統輸出矩陣
外文關鍵詞: Transmission zeros, Linear time-invariant multivariable system, Output feedback gain matrix, Zero assignment, Pole assignment, Direct-feedthrough term
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,針對線性非時變多變數系統討論傳輸零點配置的問題。本文指出此問題可透過演算法找出一個利用極點配置的滿秩輸出回授矩陣,即可指定其系統零點。藉由演算法得到的輸出回授矩陣,使用反矩陣當成線性多變數系統的直接傳輸項,最後,即可以將傳輸零點設置在期待的零點上。除此之外,本文還指出了零點配置與極點配置是等價的數學問題,藉由建構一個系統輸出矩陣,來達到設計系統零點在期待的位置。

    In this thesis, we consider the problem of assigning transmission zeros in a linear time-invariant multivariable system. It shows the problem can be formulated as that of finding a full rank output feedback gain matrix which assigns the eigenvalues of the given system to the locations at which the transmission zeros are to be positioned. Also, it shows the zero assignment and pole assignment are mathematically equivalent problems. Using the inverse of the output feedback gain matrix as a direct-feedthrough term in a system yields transmission zeros at the desired locations.

    摘要 i Abstract ii Acknowledgement iii Contents iv Chapter 1 Introduction 1 Chapter 2 Zero Assignment in Multivariable System Using Pole Assignment Method 3 2.1 Problem Description 4 2.2 Reduction to Pole Assignment in Regular State-Space System 4 2.3 Design Procedure 8 2.4 Illustrative Examples 8 Chapter 3 On Pole Assignment in Linear Systems with Incomplete State Feedback 11 3.1 Problem Description 12 3.2 Algorithm to Find Output Feedback Gain Matrix 15 3.3 Design Procedure 16 3.4 Illustrative Examples 19 Chapter 4 On Pole Assignment in Linear Systems Using Output Feedback 21 4.1 Problem Description 22 4.2 Constructing Output Feedback Gain Matrix 22 4.3 Illustrative Examples 26 Chapter 5 Zero Assignment in Multivariable System (Square System) with Direct-Feedthrough Term Using Pole Assignment Method 30 5.1 Main Problem Description 31 5.2 Assigning Transmission Zero 31 5.3 Illustrative Examples 35 Chapter 6 Conclusion 39 References 40

    [1] Armentano, V. A., “Eigenvalue placement for generalized linear system,” System and Control Letters, vol. 4, no. 4, pp. 199-202, Jun 1984.
    [2] Davison, E. J., and Wang, S. H., “On pole assignment in linear multivariable systems using output feedback,” IEEE Transactions on Automatic Control, vol. 20, no. 4, pp. 516-518, Aug 1975.
    [3] Davison, E. J., and Chow, S. G., “An algorithm for the assignment of closed-loop poles using output feedback in large linear multivariable,” IEEE Transactions on Automatic Control, vol. 18, no. 1, pp. 74-75, Feb 1973.
    [4] Davison, E. J., “On pole assignment in linear systems with incomplete sate feedback,” IEEE Transactions on Automatic Control, vol. 15, no. 3, pp. 348-351, Jun 1970.
    [5] Davison, E. J., and Wonham, W. M., “On pole assignment in multivariable linear systems,” IEEE Transactions on Automatic Control, vol. 13, no. 6, pp. 747-749, Dec 1968.
    [6] Davison, E. J., and Chatterjee, R., “A note on pole assignment in linear systems with incomplete sate feedback,” IEEE Transactions on Automatic Control, vol. 16, no. 1, pp. 98-99, Feb 1971.
    [7] Fallside, F., and Seraji, H., “Pole-shifting procedure for multivariable systems using output feedback,” Electrical Engineers, Proceedings of the Institution, vol. 118, no. 11, pp. 1648-1654, Nov 1971.
    [8] Kimura, H., “Pole assignment by gain output feedback,” IEEE Transactions on Automatic Control, vol. 20, no. 4, pp. 509-516, Aug 1975.
    [9] Miminis, G. S., and Paige, C. C., “An algorithm for pole assignment of time-invariant linear systems,” International Journal of Control, vol. 35, no. 2, pp. 341-354, 1982.
    [10] MacFarlane, A. G. J., and Karcanias, N., “Poles and Zeros of linear multivariable systems: a survey of the algebraic, geometric and complex variable theory,” International Journal of Control, vol. 24, no. 1, pp. 33-74, 1976.
    [11] Misra, P., and Patel, R. V., “Transmission zero assignment in linear multivariable systems part I: square system,” Proceedings of the 27th IEEE Conference on Decision and Control, vol. 2, pp. 1310-1311, 1998.
    [12] Misra, P., and Patel, R. V., “Algorithm for eigenvalue assignment by constant and dynamic output feedback,” IEEE Transactions on Automatic Control, vol. 34, no. 6, pp. 579-588, Jun 1989.
    [13] Naeini, A. E., and Dooren, P. V., “Computation of zeros of linear multivariable systems,” Automatica, vol. 18, no. 4, pp. 415-430, Jul 1982.
    [14] Patel, R. V., “On blocking zeros in linear multivariable systems,” IEEE Transactions on Automatic Control, vol. 31, no. 3, pp. 239-241, Mar 1986.
    [15] Patel, R. V., and Misra, P., “Numerical algorithms for eigenvalue assignment by state feedback,” Proceedings of the IEEE, vol. 72, no. 12, pp. 1755-1764, Dec 1984.
    [16] Smagina, Ye. M., “Zero assignment in multivariable system using pole assignment method,” 2002 [Online]. Available: http://arxiv.org/abs/math/0207094.
    [17] Syrmos, V. L., and Lewis, F. L., “Transmission zero assignment using semistate description,” IEEE Transactions on Automatic Control, vol. 38, no. 7, pp. 1115-1120, Jul 1993.
    [18] Sridhar, B., and Lindorff, D. P., “Pole placement with constant gain output feedback,” International Journal of Control , vol. 18, no. 5, pp. 993-1003, 1973.
    [19] Topaloglu, T., and Seborg, D. E., “An algorithm for pole the assignment using output feedback,” Joint Automatic Control Conference , pp. 309-312, 1974.
    [20] Verhgese, G. C., Levy, B. C., and Kailath, T., “A generalized state-space for singular systems,” IEEE Transactions on Automatic Control, vol. 26, no. 4, pp. 811-831, Aug 1981.
    [21] Wonham, W. M., “On pole assignment in multi-input controllable linear systems,” IEEE Transactions on Automatic Control, vol. 12, no. 6, pp. 660-665, Dec 1967.

    無法下載圖示 校內:2021-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE