簡易檢索 / 詳目顯示

研究生: 林錫宏
Lin, Xi-Hong
論文名稱: 適用於分散式運算之離散傅立葉轉換設計
The Efficient Hardware Design for Discrete Fourier Transform Using Distributed Arithmetic
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 117
中文關鍵詞: 離散傅立葉轉換分散式運算質數非質數現場可程式化邏輯閘陣列
外文關鍵詞: DFT, distributed arithmetic, prime, non-prime, FPGA
相關次數: 點閱:127下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在數位訊號處理(DSP or digital signal processing)的領域中,離散傅立葉轉換(DFT or discrete Fourier transform)扮演著相當關鍵的角色,在目前某些通訊系統的規格中,DFT傳輸點數為非2的冪次方,因此需要提出可以適用於此種要求的設計。在本論文中,作者提出適合分散式運算的演算法與硬體架構來計算DFT,這是一種使用唯讀記憶體(ROM or read only memory)與移位累加器的設計,此種設計不需要使用乘法器,因此如何有效的去減小ROM size為主要的考量。作者分別針對質數點數(prime length)與非質數點數(non-prime length) DFT提出適用於分散式運算的演算法與硬體架構,相較於目前已經存在的方法,作者提出的計算質數點數與非質數點數DFT的方法,分別節省了66%、97% ROM size與50%、55%的加法器數量。此外,在硬體架構上,相較於其他的電路設計,在本論文中電路的關鍵路徑是最短的,可以預期的是電路可操作的速度為最快。

    In digital signal processing (DSP), the discrete Fourier transform (DFT) is crucial. These days, the transform length of DFT is not power of two in some specification of communication system, so we need to find a way to meet this requirement. In this thesis, the author has proposed algorithm and hardware architecture suitable for DA to calculate DFT, this is the design using ROM and shift adder, but there is no multiplier. The author has proposed algorithm and hardware suitable for DA to calculate prime length DFT and non-prime length DFT. Compared with existing method, proposed method has improved by 66% and 97% in ROM size for prime length and non-prime length DFT, respectively; in addition, proposed method has improved by 50% and 55% in number of adder for prime length and non-prime length DFT, respectively. Moreover, the critical path of proposed circuit is minimum. Thus it can be expected that clock speed of proposed circuit is maximum.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VIII 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 2 第 2 章 文獻回顧 3 2.1 前言 3 2.2 分散式運算[15-19] 3 2.3 Siu et al.’s 演算法[12] 6 2.4 Chen et al.’s 演算法[14] 11 2.4.1 GDA approach for cyclic convolution 11 2.4.2 BGDA realization on long length cyclic convolution 13 2.4.3 GDA方法應用在1-D DFT 17 第 3 章 所提出之DA-BASED DFT演算法及其架構 27 3.1 前言 27 3.2 Prime length 27 3.2.1 演算法 27 3.2.2 硬體架構 41 3.3 Non-prime length 48 3.3.1 演算法 48 3.3.2 硬體架構 55 第 4 章 模擬與比較 69 4.1 前言 69 4.2 比較 69 4.2.1 硬體資源 69 4.2.2 關鍵路徑 77 4.3 模擬 79 4.3.1 ASIC design flow 79 4.3.2 FPGA 104 第 5 章 結論 113 參考文獻 115

    [1] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Computation, vol. 19, pp. 297-301, 1965.
    [2] Y. Zhi-Xing, et al., "Design of a 3780-point IFFT processor for TDS-OFDM," Broadcasting, IEEE Transactions on, vol. 48, pp. 57-61, 2002.
    [3] Y. Xiaogang, et al., "Hardware design and implementation of 3780 points FFT based on FPGA in DTTB," in Application of Information and Communication Technologies (AICT), 2010 4th International Conference on, 2010, pp. 1-4.
    [4] H. Chen-Fong, et al., "A Generalized Mixed-Radix Algorithm for Memory-Based FFT Processors," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 57, pp. 26-30, 2010.
    [5] J. Le and L. Lin, "A power-of-two FFT algorithm and structure for DRM receiver," Consumer Electronics, IEEE Transactions on, vol. 56, pp. 2061-2066, 2010.
    [6] K. Dong-Sun, et al., "Design of a mixed prime factor FFT for portable digital radio mondiale receiver," Consumer Electronics, IEEE Transactions on, vol. 54, pp. 1590-1594, 2008.
    [7] D. Kolba and T. Parks, "A prime factor FFT algorithm using high-speed convolution," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, pp. 281-294, 1977.
    [8] C. Shuni and C. Burrus, "A prime factor FTT algorithm using distributed arithmetic," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 30, pp. 217-227, 1982.
    [9] P. Chow, et al., "A Pipelined Distributed Arithmetic PFFT Processor," Computers, IEEE Transactions on, vol. C-32, pp. 1128-1136, 1983.
    [10] P. K. Meher, "Efficient Systolic Implementation of DFT Using a Low-Complexity Convolution-Like Formulation," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 53, pp. 702-706, 2006.
    [11] C. Chao and K. K. Parhi, "Low-Cost Fast VLSI Algorithm for Discrete Fourier Transform," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 54, pp. 791-806, 2007.
    [12] W. C. Siu and C. F. Chen, "New realisation technique of high-speed discrete Fourier transform described by distributed arithmetic," Computers and Digital Techniques, IEE Proceedings E, vol. 130, pp. 177-182, 1983.
    [13] J. I. Guo, et al., "The efficient memory-based VLSI array designs for DFT and DCT," Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 39, pp. 723-733, 1992.
    [14] H. C. Chen, et al., "Distributed arithmetic realisation of cyclic convolution and its DFT application," Circuits, Devices and Systems, IEE Proceedings -, pp. 615-629, 2005.
    [15] A. Peled and L. Bede, "A new approach to the realization of nonrecursive digital filters," Audio and Electroacoustics, IEEE Transactions on, vol. 21, pp. 477-484, 1973.
    [16] A. Peled and L. Bede, "A new hardware realization of digital filters," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 22, pp. 456-462, 1974.
    [17] C. Burrus, "Digital filter structures described by distributed arithmetic," Circuits and Systems, IEEE Transactions on, vol. 24, pp. 674-680, 1977.
    [18] S. A. White, "Applications of distributed arithmetic to digital signal processing: a tutorial review," ASSP Magazine, IEEE, vol. 6, pp. 4-19, 1989.
    [19] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. New York: Wiley, 1999.
    [20] C. M. Rader, "Discrete Fourier transforms when the number of data samples is prime," Proceedings of the IEEE, vol. 56, pp. 1107-1108, 1968.
    [21] S. Brown and Z. Vranesic, Fundamentals of Digital Logic with Verilog Design. New York: McGraw-Hill, 2008.
    [22] N. H. E. WESTE and D. Harris, CMOS VLSI DESIGN:A Circuits and Systems Perspective. Boston: Addison Wesley, 2005.
    [23] R. G. Lyons, Understanding Digital Signal Processing. New Jersey: Prentice Hall, 2004.
    [24] C. Burrus, "Index mappings for multidimensional formulation of the DFT and convolution," Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 25, pp. 239-242, 1977.
    [25] C. S. B. a. T. W. Parks, DFT/FFT and Convolution Algorithms. New York: Wiley, 1985.
    [26] ETSI, "Digital Radio Mondiale(DRM); system specification," ed, 2009.
    [27] ARM, "AMBA Specification (Rev 2.0)," ed, 1999.
    [28] 邱俊傑, ARM Processor Design Kit. Hsinchu: CIC Training Manual, January, 2011.
    [29] Xilinx, "Xilinx ISE Software Manuals," ed.
    [30] ARM, "ARM Developer Suite version 1.2, CodeWarrior IDE Guide," ed: ARM Ltd, 2001.
    [31] ARM, "ARM Developer Suite Version 1.2, AXD and armsd Debuggers Guide," ed, 2001.

    下載圖示 校內:2017-09-03公開
    校外:2017-09-03公開
    QR CODE