簡易檢索 / 詳目顯示

研究生: 邱品樵
Chiou, Pin-Chiau
論文名稱: 雷射披覆溫度於形貌控制與顯微結構之影響
Effects of the temperature for profile control and microstructure in laser cladding
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 114
中文關鍵詞: 雷射多層披覆溫度訊號形貌控制
外文關鍵詞: Multilayer cladding, Temperature signal, Profile control
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用50W的CO2雷射進行披覆試驗,並且搭配溫度感測儀與影像監測系統控制披覆層於不銹鋼板表面產生的積層效果,修正加工功率與披覆速度和焦點位置達到工件形貌上的平整與機械性質需求。探討不銹鋼304L粉末不同粒徑之熱傳導率、運送氣體流率對粉末流結構影響、粉末與雷射有效作用範圍變化因素,從而彙整參數範圍與對應趨勢。
    數值計算部分是利用ANSYS分析工件於披覆時移動熱源在不同表面位置所產生的溫度變化,討論製程參數對熔池尺寸的影響。同時模擬不銹鋼粉末於噴嘴出口與雷射作用的動態溫度曲線,作為參數選擇依據。實驗方面,藉由單層披覆與多層披覆比較熱傳導率在三維空間的差異,單層披覆的散熱模式為鋼板而多層披覆散熱主要為工件本身,藉由輔助儀器監控溫度訊號分析多道次的熔池溫度與形貌關係。結果顯示,在多層披覆時使用雷射預熱板材可以提升工件平整度,粉末噴射角在30∘能夠與雷射有較佳的批覆效果,加工能量越強且披覆速度越低的情況硬度值會隨之上升,同時顯微晶粒會有細化現象。

    In this study, a 50 W CO2 laser was carried out for cladding experiment.
    Temperature sensing device and image monitoring system were adopted to monitor the layer deposition on stainless steel substrate. Processing was modified by different laser power, velocity, and focus position to reach an optimum morphology and mechanical properties of the cladding on demand.
    The analyses for thermal conductivity of 304L stainless steel powder, transporting gas flow rate on the powder structure, and the interaction between powder and laser were made to find proper processing parameters, which were tested to demonstrate the feasibility.
    ANSYS was used to calculate distribution of temperature for laser irradiates on moving substrate in the numerical part. Experimentally with single and multi-layer cladding, it is to compare the differences in 3D printing. Due to the clad profile cooling by substrate and workpiece itself, the equipment was applied to monitor temperature signal for multi-pass analysis and to predict the relationship between the melt pool temperature and cladding profile. The results show that a preheating substrate by laser can enhance flatness of the cladding profile. Besides, grain refinement phenomenon might occur at large power and low cladding speed, the hardness of workpiece would also increase.
    Key words: Multilayer cladding;Temperature signal;Profile control

    中文摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明 XVIII 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景與文獻回顧 4 1-3 本文架構 13 第二章 應用理論 15 2-1 不銹鋼受熱模型分析 15 2-2 雷射移動熱源與固液界面溫度分析 21 2-2.1 固液界面熱傳方程式 21 2-2.2 雷射一維熱傳導模型 25 2-2.3 雷射移動熱源溫度分布 27 2-3 熔池溫度與積層厚度關係 30 第三章 數值分析 32 3-1 雷射披覆計算流程 33 3-1.1 不銹鋼材料溫度性質設定 34 3-1.2 保護氣體對熔池之影響 35 3-1.3 ANSYS Workbench介紹 38 3-2 製程參數對熔池溫度之影響 38 3-2.1 模型網格設置與假設條件 39 3-2.2 高斯雷射移動熱源 41 3-2.3 改變功率對熔池溫度之影響 43 3-2.4改變速度對熔池溫度之影響 46 3-2.5披覆高度於板材受熱關係 48 3-3 粉末飛行與雷射作用分析 51 3-3.1 物理模型與假設 52 3-3.2 物理參數之影響 53 3-3.3 數值模擬結果 54 3-4 數值分析總結 59 第四章 雷射披覆控制實驗 61 4-1 實驗設備介紹 61 4-1.1 實驗設備架設 61 4-1.2 CO2雷射加工機與移動平台 62 4-1.3溫度量測儀器與影像監測系統 63 4-1.4 304L不銹鋼粉末性質 64 4-2 雷射與粉末作用效應分析 65 4-2.1金屬粉末粒徑與雷射熱傳導關係 66 4-2.2觀測粉末流場與氣體控制 68 4-2.3粉末噴嘴焦距調整與熱粉觀測 71 4-3 雷射單層披覆參數分析與量測 72 4-3.1 粉末質量流率對應披覆尺寸與外觀 73 4-3.2 雷射披覆速度對應披覆尺寸與外觀 76 4-3.3 雷射披覆功率與基板溫度量測 79 4-4 雷射多層披覆溫度控制實驗 84 4-4.1 雷射功率控制與溫度關係 84 4-4.2 掃描速度控制與溫度關係 89 4-4.3 披覆高度控制變化與溫度關係 93 4-5 硬度與金相品質檢測 99 4-5.1金相顯微結構分析 100 4-5.2微小硬度量測 104 4-6 結果與討論 106 第五章 結論 108 5-1 綜合討論 108 5-2 相關建議與未來發展 112 參考文獻 113

    [1]Bi G., Schurmann B., “Development and qualification of a novel laser-cladding head with integrated sensors”, Machine Tools & Manufacture, v47 p555–561, 2007.
    [2]Song L., Mazumder J., “Control of melt pool temperature and deposition height during direct metal deposition process”, Advanced Manufacturing Technology, v58 P247–256,2012
    [3]Kong F., Kovacevic R., “Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process”, Materials Processing Technology, v41, p1310-1320, 2010.
    [4]Pinkerton A. J., Lin L., “The significance of deposition point standoff variations in multiple-layer coaxial laser cladding(coaxial cladding standoff effects)”, Machine Tools & Manufacture, v44, p573-584, 2004.
    [5]Pan H., Sparks T., Thakar Y. D., Liou F., “The Investigation of Gravity-Driven Metal Powder Flow in Coaxial Nozzle for Laser-Aided Direct Metal Deposition Process”, Manufacturing Science and Engineering, v128, p541-553, 2006.
    [6]Kovalev O.B., Zaitsev A.V., Novichenko D., Smurov I., “Theoretical and Experimental Investigation of Gas Flows, Powder Transport and Heating in Coaxial Laser Direct Metal Deposition (DMD) Process”, Thermal Spray Technology, v20, p465-478, 2010.
    [7]He X., Yu G., Mazumder J., “Temperature and composition profile
    during double-track laser cladding of H13 tool steel”, APPLIED PHYSICS, v43, 2009.
    [8]Hao M., Sun Y., “A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach”, Heat and Mass Transfer, v64,p352-360, 2013.
    [9]Liu C.Y., Lin J., “Thermal processes of a powder particle in coaxial laser cladding”, Optics & Laser Technology, v35, p81-86, 2003.
    [10]Wilson O., “Stefan’s Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process”, COMSOL Conference, 2010.
    [11]Incropera F. P., “Fundamentals of heat and mass transfer”, v7, WILEY Companies, 2011
    [12]Steen W. M., Mazumder J., “Laser Material Processing”, v4, Springer Companies, 2010
    [13]Kong F., Kovacevic R., “Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process”, Metallurgical and Materials Transactions,v41, p1310-1320, 2010
    [14]Yu H. Y., Sun D. B., Huang C. B., Yang D. G., “Technique and properties of sealing treatment on the electro less Ni-P alloy coatings”, Journal of Functional Materials, v32(3), p 262-263, 2001.
    [15]“Thermal analysis guide”, ANSYS Inc., 2008
    [16]Kong F., Kovacevic R., “An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding”, Materials Processing Technology, v211, p1247-1259, 2011.
    [17]Liu J., Li L., “Attenuation of laser power of a focused Gaussian beam during interaction between laser and powder in coaxial laser cladding ” , APPLIED PHYSICS, v38, p 1546-1550, 2005.
    [18]Peyre P., Aubry P., Fabbro R., “Analytical and numerical modeling of the
    direct metal deposition laser process”, APPLIED PHYSICS, v41, 2008.
    [19]Zhao G., Cho C., Kim J.D., “Application of 3-D finite element method using Lagrangian Formulation to dilution control in laser cladding process”, Journal of Mechanical Sciences, v45, p777-796, 2003.
    [20]Fallah V., Alimardani M.,“Temporal development of melt-pool morphology and clad geometry in laser Powder deposition”, Computational Materials Science,v50 p2124-2134, 2011.
    [21]Song L., Mazumder J., “Feedback Control of Melt Pool Temperature During Laser Cladding Process”, Transactions On Control Systems Technology, v19 p1349-1356, 2011.
    [22]Li K., Li D., “Microstructure evolution and mechanical properties of multiple-layerlaser cladding coating of 308L stainless steel”, Applied Surface Science, v340 p143-150, 2015.
    [23]Huang F. X., Jiang Z. H., “Effects of Process Parameters on Microstructure and Hardness of Layers by Laser Cladding”, ISIJ International, v51, p441-447, 2011.

    無法下載圖示 校內:2026-07-01公開
    校外:2026-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE