| 研究生: |
莊紫晴 Chuang, Tzu-Ching |
|---|---|
| 論文名稱: |
浮體式平台與錨鍊系統之實驗研究 Experiment Study of the Motion of the Floating Offshore Turbine |
| 指導教授: |
陳陽益
Chen, Yang-YI |
| 共同指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 離岸風能 、半潛式 、浮動式平台 、模型試驗 |
| 外文關鍵詞: | floating platform, wind energy, mooring, semisubmersible |
| 相關次數: | 點閱:112 下載:41 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著綠色能源需求日益增大,風力發電從陸上發展到離岸,再
由淺水往深水發展,故深水區的風力發電是目前的發展重點。深水區適合使
用浮體式基座來乘載風機,若是使用固定式基座,其成本會隨著水深而驟
增,因此浮體式基座是一個較具經濟效益的選擇。本論文的研究重點在於浮
體式基座與錨鍊系統的運動研究,藉由實驗來分析其運動情況,並且自製了
一條防水LED 錨鍊系統,加上水下攝影與影像分析技術,即可得到錨鍊系統
在水下運動的時序列情況。
本文之實驗模型為半潛式浮體平台並符合福祿數1:50 之縮尺,風機模型
則是參考NREL 5MW,計算其受風情況下之推力,並縮尺成等效圓盤作為模
擬風推力,而實驗是於成大水工試驗所之風波流水槽完成。在實驗中,共有
四種不同的錨鍊條件—無錨鍊系統、鎖鏈式錨鍊系統、彈簧式T2 錨鍊系統以
及彈簧式T3 錨鍊系統,而實驗的內容包含自由衰減試驗、規則波作用下之運
動反應、風波作用下運動反應,以及判斷是否有瞬荷載的發生。
This research focuses on the motion of a floating wind turbine with a mooring system in the deep water. Experiment tests in a water flume were conducted at National Cheng Kung University, Tainan Hydraulics Laboratory (THL). The model is a 1:50 scaled semi-submersible platform and the turbine is scaled down from the NREL 5MW. There are four types of mooring system were simulated— No mooring, Chain’s mooring, Spring tension with a pretention T2, and Spring tension with a pretension T3. A waterproof LEDs were mounted on the mooring line, which allows us to catch the time-series motion of mooring line during the experiment. Various frequencies of periodic waves with the same wave height of 5 cm were generated to test the seakeeping. The measured parameters include three degree of freedom motion of the platform, natural period, and tension force at the fairlead. Three tests were designed to isolate the effect of wave and wind, which are— Free decay, pure regular wave, and combined regular wave and wind. The data of the test can offer boundary conditions for the numerical model verification.
[1] Akers, R.H. (no date) Why good mooring systems go bad fatigue factors in
mooring systems for floating offshore wind turbines. Available at:
http://www.mainemarinecomposites.com/uploads/pdfs/WhyGoodMooringSyste
msGoBad.pdf (Accessed: 27 June 2016).
[2] Bae, Y.H. and Kim, M.H. (2014) ‘Coupled dynamic analysis of multiple
wind turbines on a large single floater’, Ocean Engineering, 92, pp. 175–187.
doi: 10.1016/j.oceaneng.2014.10.001.
[3] Benassai, G., Campanile, A., Piscopo, V. and Scamardella, A. (2014)
‘Mooring control of Semi-submersible structures for wind turbines’, Procedia
Engineering, 70, pp. 132–141. doi: 10.1016/j.proeng.2014.02.016.
[4] Goupee, A.J., Koo, B.J., Kimball, R.W., Lambrakos, K.F. and Dagher, H.J.
(2014) ‘Experimental comparison of Three floating wind turbine concepts’,
Journal of Offshore Mechanics and Arctic Engineering, 136(2), p. 021903. doi:
10.1115/1.4025804.
[5] Hsu, W., Orono, Thiagarajan, K.P., MacNicoll, M., LLC, M.M.C. and
Akers, R. (2015) ‘Prediction of extreme tensions in mooring lines of a floating
offshore wind turbine in a 100-Year storm’, , pp. 50–9. doi:
10.1115/OMAE2015-42015.
[6] Huijs, F., GustoMSC and Netherlands, T. (2015) ‘The influence of the
mooring system on the motions and stability of a Semi-Submersible floating
wind turbine’, , pp. 67–9. doi: 10.1115/OMAE2015-41947.
[7] Ijope 11 4 p273 abst NP 35 Gobat 2 (no date) Available at:
http://www.isope.org/publications/journals/ijope-11-4/ijope-11-4-p273-abst-
NP-35-Gobat-2.pdf (Accessed: 27 June 2016).
[8] Koo, B.J., Goupee, A.J., Kimball, R.W. and Lambrakos, K.F. (2014) ‘Model
tests for a floating wind turbine on Three different Floaters’, Journal of
Offshore Mechanics and Arctic Engineering, 136(2), p. 021904. doi:
10.1115/1.4024711.
[9] Ku, N. and Roh, M.-I. (2014) ‘Dynamic response simulation of an offshore
wind turbine suspended by a floating crane’, Ships and Offshore Structures,
53
10(6), pp. 621–634. doi: 10.1080/17445302.2014.942504.
[10] Lefebvre, S. (2012) Preliminary design of a floating support structure for
a 5 MW offshore wind turbine. Available at:
https://www.researchgate.net/publication/256817687_Preliminary_design_of_a
_floating_support_structure_for_a_5_MW_offshore_wind_turbine (Accessed:
27 June 2016).
[11] Qiao, D. and Ou, J. (2014) ‘Mooring line damping estimation for a
floating wind turbine’, The Scientific World Journal, 2014, pp. 1–10. doi:
10.1155/2014/840283.
[12] Ren, N., Li, Y. and Ou, J. (2012) ‘The effect of additional mooring chains
on the motion performance of a floating wind turbine with a tension leg
platform’, Energies, 5(12), pp. 1135–1149. doi: 10.3390/en5041135.
[13] Shin, H., Lee, W., Jung, K. and Kim, J. (2014) ‘Model test and simulation
of modified spar type floating offshore wind turbine with three catenary
mooring lines’, Journal of Renewable and Sustainable Energy, 6(4), p. 042009.
doi: 10.1063/1.4891967.
[14] Utsunomiya, T., Matsukuma, H., Minoura, S., Ko, K., Hamamura, H.,
Kobayashi, O., Sato, I., Nomoto, Y. and Yasui, K. (2013) ‘At sea experiment of
a hybrid Spar for floating offshore wind turbine using 1/10-Scale model’,
Journal of Offshore Mechanics and Arctic Engineering, 135(3), p. 034503. doi:
10.1115/1.4024148.
[15] Waris, M.B. and Ishihara, T. (2012a) ‘Dynamic response analysis of
floating offshore wind turbine with different types of heave plates and mooring
systems by using a fully nonlinear model’, Coupled Systems Mechanics, 1(3),
pp. 247–268. doi: 10.12989/csm.2012.1.3.247.
[16] Waris, M.B. and Ishihara, T. (2012b) Coupled Systems Mechanics, 1(3),
pp. 247–268. doi: 10.12989/csm.2012.1.3.247.