簡易檢索 / 詳目顯示

研究生: 水瑞鐏
Water, Walter
論文名稱: 氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用
Characterization of ZnO Thin Film and Its Applications on Communication Devices and Liquid Sensors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 126
中文關鍵詞: 氧化鋅愛波石英基板矽基板
外文關鍵詞: Love Wave, ZnO, Quartz, Si
相關次數: 點閱:86下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要是研究以射頻磁控濺鍍法,在矽與石英基板成長(002)軸向之氧化鋅薄膜,調變不同製程參數,如基板溫度、氬氣與氧氣比例、濺鍍功率對薄膜特性的影響,利用X光繞射儀、掃描式電子顯微鏡、原子力顯微鏡檢測薄膜晶體結構、內應力、與薄膜表面粗糙度。

      在低基板溫度與低濺鍍功率的環境下,可成長單一C軸之氧化鋅薄膜,將氧化鋅薄膜在真空環境中退火,能夠消除薄膜中的內應力、改良表面粗糙度且可增加電阻率近10倍,退火製程使氧化鋅薄膜具有更佳的壓電特性,以氧化鋅薄膜製成一over-mode共振器,在真空環境下以400℃退火一小時,共振頻率在2GHz時,其return loss可達42dB。

      以不同厚度的氧化鋅薄膜成長在石英基板上製成愛波元件,研究不同膜厚對元件波速、機電耦合常數和溫度飄頻係數的影響,當波長為40mm,膜厚為1.8mm時可得到最大的機電耦合常數,膜厚為2.6mm時,溫度飄頻係數接近於0。為了提高愛波感測器的敏感度,研究濺鍍時不同基板溫度對元件黏滯係數與導電係數敏感度之影響,成長薄膜在不加溫基板上比在加溫基板上可得到較高敏感度的元件,波長為40mm,膜厚為1.8mm時,敏感度最高可達-18.77’10-8m2skg-1,遠大於二氧化矽與石英基板結構的愛波感測器,供共振濾波器應用的氧化鋅薄膜,其薄膜特性要求完全不同於在感測器上的應用,經由調變不同製程參數,可分別得到適用於濾波器和感測器的氧化鋅薄膜。

      Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the silicon and quartz substrate by RF magnetron sputtering technique. The deposited films were characterized as a function of deposition temperature, argon-oxygen gas flow ratio, and RF power. Crystalline structures, stress and surface roughness characteristics of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurement.

      The preferred c-axis orientation of ZnO films can be grown at low RF power and low substrate temperature condition. Postdeposition annealing ZnO films in vacuum circumstance were found to relieve stress, improve rough surface and increase resistivity one order. ZnO film has better piezoelectric characteristics after postdeposition annealing process, and then a delay-line resonator was fabricated and showed a large return loss of 42dB at the center frequency about 2GHz after annealing for 400°C one hour in vacuum.

      An experimental study of Love wave devices based on ZnO/90° rotated ST-cut quartz by different thickness of ZnO films is also presented. Phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency have been studied as a function of layer thickness. The maximum electromechanical coupling coefficient is obtained for 1.8mm ZnO film and near zero temperature coefficient of frequency is obtained for 2.6mm ZnO film for a wavelength of 40mm, respectively. In order to fabricate sensors with higher sensitivity, the effect of substrate temperature on the sensitivity of viscosity and conductivity were investigated. The Love wave sensor has higher sensitivity for ZnO films sputtered on unheated substrate than that of on heated substrate. The maximum sensitivity up to -18.77’10-8m2skg-1 of ZnO film with thickness of 1.8mm for a wavelength of 40mm is much larger than SiO2/Quartz structure. The required characteristics of ZnO film for resonator filter and sensor applications are contrariwise. Preferred deposition condition was found to have good film quality for resonator filter and sensor applications, respectively.

    List of Figures............................................................................................XIII List of Tables.............................................................................................XVII Chapter 1 Introduction...............................................................................1 Chapter 2 Literature Review.....................................................................6  2.1 Surface and Bulk Acoustic Wave....................................................6   2.1.1 Piezoelectric Interactions.........................................................6   2.1.2. Rayleigh Wave Considerations...............................................9  2.2 Surface Skimming Bulk Wave (SSBW) Piezoelectric Cuts...........10  2.3 Love wave.........................................................................................11  2.4 Structure of SAW filter......................................................................12  2.5 Cross-field Model..............................................................................13  2.6 Coupling of Model.............................................................................14   2.6.1 Transmission matrix of grating..................................................14   2.6.2 Transmission matrix of IDT.......................................................15   2.6.3 Transmission matrix of delay line.............................................17 Chapte 3 Measurement Setups in ZnO Films and Devices.......................29  3.1 Sample preparation...........................................................................29  3.2 RF Sputtering System........................................................................30  3.3 Postdeposition Annealing.................................................................33  3.4 Measurements of Films Structural Quality.......................................33   3.4.1 X-Ray Analysis............................................................................33   3.4.2 SEM and AFM Analysis..............................................................34   3.4.3 Stress Analysis.............................................................................34  3.5 Measurement of SAW Properties ......................................................36  3.6 Over-Mode Resonator Properties Measurement..............................37  3.7 Love-Wave Sensor Properties Measurement...................................37 CHAPTER 4 Sputtering ZnO Films on Silicon Using Zinc Target...........50  4.1 Influence of sputtering parameters on physical structure of ZnO Film.......50   4.1.1 X-ray Analysis..............................................................................51   4.1.2 SEM Analysis...............................................................................52   4.1.3 Roughness of Surface..................................................................53   4.1.4 Resistivity Analysis.....................................................................54  4.2 Stress Analysis.....................................................................................55  4.3 Dissusions.............................................................................................57 CHAPTER 5 Sputtering ZnO Films on Silicon Using Zinc Oxide Target..............75  5.1 Resistivity Analysis..............................................................................75  5.2 X-Ray Analysis.....................................................................................77  5.3 Effects of Postdeposition Annealing...................................................77   5.3.1 Intensity of (002) Orientation.......................................................79   5.3.2 Stress Analysis...............................................................................79   5.3.3 SEM and AFM Analysis................................................................80   5.3.4 The Influence of Annealing Process on Resisitivity..................80   5.3.5 Dielectric constant and loss factor..............................................81   5.3.6 Acoustic Measurement..................................................................81  5.4Discussions.............................................................................................82 CHAPTER 6 Love Wave Acoustic Sensors and Filters in ZnO/Quartz structure.... 95  6.1 X-Ray Analysis......................................................................................96  6.2 Phase Velocity.......................................................................................96  6.3 Sensitivity..............................................................................................97  6.4 Temperature Coefficient of Frequency...............................................97  6.5 Frequency Response of Love-Mode Device......................................98  6.6 The Influence of Substrate Temperature on Sensitivity.....................99  6.7 Discussions............................................................................................102 Chapter 7 Summary and Recommendations for Future Work.......................115  7.1 Summary.................................................................................................115  7.2 Suggestions for Future Work................................................................117 References........................................................................................................119

    [1] S. Wanuga, T. A. Midford and J. P. Dietz, 1965 Ultrasonics Symposium.

    [2] G. A. Rozgonyi and W. J.Polito, Preparation of ZnO Thin films by Sputtering of the Compound in oxygen and argon, Appl. Phy. Lett. 8 (1966) 220-221.

    [3] N. F. Foster and G. A. Rozgonyi, Zinc Oxide Films Transducers, Appl. Phy. Lett. 8 (1966) 221-223.

    [4] A. J. DeVries and R. Adler, Case History of a Surface-Wave TV IF Filter for Color TV Receivers, Proc. IEEE, 64 (1976) 671-676.

    [5] R. M. Hays and C. S. Hartmann, Surface-Acoustic-Wave Devices for Communication, Proc. IEEE, 64 (1976) 652-669.

    [6] Falk Herrmann, Manfred Weihnacht and Stephanus Buttgenbach, Properties of sensors based on Shear-Horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures, IEEE Trans. Ultrasonics Freq. Control, UFFC-48 (2001) 268-273.

    [7] J. Du, G. L. Harding, J. A. Ogilvy, P. R. Dencher, M. Lake, A study of Love-wave acoustic sensors, Sensors and Actuators A, 56 (1996) 211-219.

    [8] Joel F. Rosenbaum, Bulk acoustic wave theory and devices, Artech House, Norwood MA, 1988.

    [9] Michio Kadota, Surface Acoustic Wave Characteristics of a ZnO/Quartz Substrate Structure Having a Large Electromechanical Coupling Factor and Small Temperature Coefficient, Jpn. J. Appl. Phys. Part 1 5B (1997) 3076-3080.

    [10] M. N. Kamalasanan and Subhas Chandra, Sol-gel synthesis of ZnO thin films, Thin Solid Films 288 (1996) 112-115.

    [11] Paraguay F.D., Estrada W.L., Acosta D.R.N., Andrade E., Miki-Yoshida M., Growth, Structure and Optical Characterization of High Quality ZnO Thin Films Obtained by Spray Pyrolysis , Thin Solid Films 350 (1999) 192-202.

    [12] Nakamura Kiyoshi, Shoji Tatsuya, Kang Hee-Bog, Zno Film Growth on (011 Over-BAR 2) LiTaO3 by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy and Determination of its Polarity, Japanese Journal of Applied Physics, Part 2, 6 (2000) L534-L536.

    [13] Minami Tadatsugu, Sonohara Hideo, Takata Shinzo, Sato Hirotoshi, Transpartent and Conductive ZnO Thin Films Prepared by Atomsphreic-Pressure Chemical Vapor Deposition Using Zinc Acetylacetonate, Japanese Journal of Applied Physics, Part 2: 5B (1994) L743-L746.

    [14] S. Maniv and A. Zangvil, Controlled Texture of reactively RF-Sputtered ZnO Thin Films, J. Appl. Phys. 5 (1978) 2787-2792.

    [15] Mu-Shiang Wu, Wen-Ching Shih and Woo-Hu Tsai, Growth of ZnO Thin Films on Interdigital Transducer/Corning 7059 Glass Substrate by Two-Step Fabrication Methods for Surface Acoustic Wave Applicatons, J. Phys D: Appl. Bhys. 31 (1998) 943-950.

    [16] Ken-ya Hashimoto, Shotaro Ogawa, Akinori Nonoguchi, Tatsuya Omori and Masatsune Yamaguchi, Preparation of Piezoelectric ZnO Films by Target Facing Type of Sputtering Method, IEEE Ultransonics Symp. Proc. (1998) 207-212.

    [17] K. B. Sundaram and A. Khan, Characterization and Optimization of Zinc Oxide Films By RF Magnetron Sputtering, Thin Solid Films 295(1997) 87-91.

    [18] Vinay Gupta and Abhai Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, J. Appl. Phys. 2 (1996) 1063-1073.

    [19] C. K. Campbell, Surface Acoustic Eave Devices for Mobil and Wireless Communications, Academic Press, Inc. 1998.

    [20] Z. Wang, J. D. N. Cheeke and C. K. Jen, Sensitivity Analysis for Love Mode Acoustic Gravimetric Sensors, Appl. Phys. Lett. 64 (20), 1994, 2940-2942.

    [21] P. S. Cross and R. V. Schmidt, Coupled Surface-Acoustic-Wave Resonators, The Bell Syst. Tech. J. 56 (1977) No. 8, 1447.

    [22] Frans C. M. Van De Pol, Thin-Film ZnO?Properties and Applications, Ceramic Bulletin, 69 (12) (1990) 1959-1965.

    [23] K. Ohji, T. Tohda, K. Wasa and S. Hayakawa, Highly Oriented ZnO Films by rf-sputtering of Hemispherical Electrode System, J. Appl. Phys. 47 (1976) 1726-1728.

    [24] K. Wasa, K. Ohji, O. Yamazaki and S. Hayakawa, Surface Wave Transducers of ZnO Films with Controlled direction of C-axis, Jpn. J. Appl. Phys. 2 pt-1 (1974) 745-747.

    [25] W. D. Westwood and S. J. Ingrey, Sputtered ZnO Optical Wave-guides, Wave Electronics 1 (1974) 139.

    [26] B. T. Khuri-Yakub, G. S. Kino and P. Galle, Studies of the Optimum Conditions for Growth of rf-sputtered ZnO Films, J. Appl. Phys. 46 (1975) 3266-3272.

    [27] J. D. Larson, D. K. Winslow and L. T. Zitelli, RF Diode Sputtered ZnO Transducers, IEEE Trans. Sonics. Ultrason. 19 (1972) 18-22.

    [28] Vinay Gupta and Abhai Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, J. Appl. Phys. 80 (2) (1996)1063-1073.

    [29] John A. Thornton and D. W. Hoffman, "Stress-Related Effects in Thin Films", Thin Solid Films, 171 (1989) 5-31

    [30] Jwo-Huei Jou, Min-Yung Han and Duen-Jen Cheng, "Substrate dependent internal stress in sputtered zinc oxide thin films", J. Appl. Phys. 71, 9(1992) 4333-4336.

    [31] W. Richard Smith, Henry M. Gerard, Jeffrey H. Collins, Thomas M. Reeder and Herbert J. Shaw, Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans. on Microwave Theory and Techniques, 17 (1969) 856-864.

    [32] F. Herrmann, M. Weihnacht and S. Buttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37 (1999) 335-341.

    [33] Chin-Chong Tseng, Elastic surface wave on free surface and metallized surface of CdS, ZnO, and PZT-4, Journal of Applied Physics 38 (11) (1967) 4281-4283.

    [34] Fred S., Hickernell, Measurement techniques for evaluating piezoelectric thin films, IEEE Ultransonics Symp. Proc. (1996) 235-242.

    [35] K.Sugiyama, K. Taniguchi and Kuwabara, Journal of Materials Science Letters 9 (1990) 489.

    [36] Osamu Yamazaki, Tsuneo Mitsuyu and Kiyotaka Wasa, ZnO Thin-Film SAW Devices, IEEE Transactions on Sonics and Ultrasonics SU-27, NO.6 November (1980), 369.

    [37] E. D. Kolb and R. A. Laudies, Hydrothermally Grown znO Crystals of Low and Intermediate Resistivity, Journal of the American Ceramic Society 49 (6) (1966) 302.

    [38] D. L. Raimondi and E.Kay, "High Resistivity Transparent ZnO Thin Films", The Journal of Vacuum Sicence and Technology, 7 (1969) 96-99.

    [39] J. K. Srivastava, Lily Agarwal, and A. B. Bhattachryya, Electrical Characteristics of Lithium-doped ZnO Films, J. Electrochem. Soc. 136 (136) (1989) 3414.

    [40] P. Bonasewicz, W. Hirschwald and Neumann, Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films,, J. Electrochem. Soc. 133 (11) (1986) 2270.

    [41] Tadatsugu Minami, Hideo Sonohara, Shinzo Takata, Hirotoshi Sato, Transparent and Conductive ZnO Thin Films Prepared by Atmospheric-Pressure Chemical Vapor Deposition Using Zinc Acetylacetonate, Japanese Journal of Applied Physics, Part 2: Letters 33 (15) (1994) L743.

    [42] N. Croitoru, A. Seidman and K. Yassin, "Some Physical Properties of ZnO Sputtered Films", Thin Solid Films, (150) (1987) 291-301.

    [43] V. P. Kutepova and D. A. Hall, IEEE Ultrasonics Symposium (1998) 213.

    [44] R. J. Lad, P. D. Funkenbusch and C. R. Aita, Postdeposition Annealing Behavior of RF Sputtered ZnO Films, J. Vac. Sci. Technol., 17 (4) (1980) 808.

    [45] R. S. Krishnan, R. Strinivasan, and S. Devanarayanan, Thermal Expansion of crystals (Pergamon, Oxford, 1979)

    [46] Zhang, D. H. and Brodie, D. E., Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition, Thin Solid Film, 1994, 238, 95-100.

    [47] Mitsuyu, T., Ono, S. and Wasa, K., Structures and SAW properties of rf-sputtered single-crystal films of ZnO on sapphire, J. Appl. Phys., 1980, 51(5), 2464-2470.

    [48] Onodera, A., Tamaki, N., Kawamura, Y., Sawada, T. and Yamashita, H., Dielectric Activity and Ferroelectricity Semiconductor Li-Doped ZnO, Jpn. J. Appl. Phys Part1, 1996, 35(9B), 5160-5162.

    [49] Seitz, M. A. and Sokoly, T. O., High-Temperature Dielectric Behavior of Polycrystalline ZnO, J. Electrochem. Soc.: Solid State Science and Technology, 1974, 121, 163-169.

    [50] F. Herrmann, M. Weihnacht and S. Buttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37 (1999) 335-341.

    [51] Leonid Daikhin and Michael Urbakh, Effect of Surface Film structure on the Quartz Crystal Microbalance Response in Liquids, Langmuir 12 (1996) 6354-6360.

    [52] Michael Urbakh and Leonid Daikhin, Influence of the Surface Morphology on the Quartz Crystal Microbalance Response in a Fulid, Langmuir 10 (1994) 2836-2841.

    [53] Beck. Ralf, Pittermann Udo, Weil Konrad G., Influence of the Surface Morphology on the coupling Between a Quartz Oscillator and a Liquid, Journal of the Electrochemical Society 139 (2) (1992) 453-461.

    [54] Yang M., Thompson M., Surface Morphology and the Response of the Thickness-Shear Mode Acoustic Wave Sensor in Liquids, Langmuir 9 (8) (1993) 1990-1994.

    [55] Z. Wang, J. D. N. Cheeke, and C. K. Jen, Sensitivity analysis for Love mode acoustic gravimetric sensor, Appl. Phys. Lett. 64(22) (1994) 2940-2942.

    [56] Bernhard Jakoby and Michael J. Vellekoop, Viscosity sensing using a Love-wave device, Sensors and Actuators A 68 (1998) 275-281.

    [57] B. A. Auld, Acoustic fields and waves in solids, Vol 1&2, Krieger, 1990.

    下載圖示 校內:2004-01-22公開
    校外:2006-01-22公開
    QR CODE