| 研究生: |
郭子婷 Guo, Zih-Ting |
|---|---|
| 論文名稱: |
座落於可液化地盤之不同基礎型式建築物縮尺物理模型振動台試驗 Shaking Table Tests on Scaled Physical Models of Buildings with Different Foundation Types on a Liquefiable Ground |
| 指導教授: |
柯永彥
Ko, Yung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 土壤液化 、樁基礎 、筏式基礎 、振動台試驗 、受震反應 |
| 外文關鍵詞: | Soil liquefaction, pile foundation, raft foundation, shaking table test, seismic response |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地震頻繁且多數城市建設於西部沖積平原,地震引發之土壤液化將可能影響建築物之安全性與受震行為。為探討座落於可液化地盤之不同基礎型式建築物的受震反應特性與樁~土互制行為,本研究對飽和砂土中樁基礎與筏式基礎建築物之縮尺物理模型進行一系列振動台試驗。採用大型層狀剪力箱作為地盤模型容器,模型樁以單支細長鋁管構成並採底部固定方式模擬貫入堅實地層,筏式基礎設計為完全補償型式,上部結構由鋁管與質量塊構成。以不同加速度振幅之正弦波與實際地震紀錄作為輸入運動,利用高性能地震模擬振動台進行激振試驗。透過地盤模型之加速規與水壓計、建物模型之加速規及模型樁身之應變計於試驗過程進行同步量測,以掌握地盤液化狀況、建築物受震反應與基樁側向承載行為。試驗結果顯示,地盤於發生液化後剪力強度顯著降低,導致剪力波無法有效傳遞,造成近地表加速度振幅下降,並與台面運動產生相位差。液化後樁基礎建築物頂樓加速度反而稍有放大,推測為剪力波由基樁直接傳遞至上部結構所致;一樓則因樁周土壤束制力下降,出現高頻顫動。液化亦使樁基礎建築物受震反應之顯著頻率與整體分佈型態產生相當之變化,反映樁周土壤提供之側向支撐能力喪失。筏式基礎建築物在液化前,因輸入運動頻率接近其自然頻率,產生共振效應,導致頂樓加速度明顯放大;液化後則因土層明顯弱化之故,建築物受震反應與其顯著頻率皆大幅下降;然而,筏式基礎建築物模型但在第一組地盤發生明顯液化之試驗後即發生傾倒。在樁~土互制行為方面,樁身撓曲應變顯示彎矩分佈大致呈現雙曲率特性,液化發生前,樁身最大彎矩發生於淺層;液化後則改而發生於樁底固定端,並出現反曲點上移現象。液化亦導致樁~土相對變位增加,且當樁身彎矩達最大時,大部分樁身地盤反力與樁~土相對變位方向一致,顯示土壤此時係對樁身施加載重,而非提供阻抗。此外,地盤反力係數隨超額孔隙水壓比上升而大致呈現下降,尤以淺層土壤較為明顯。以上結果,將可做為具液化潛能地區建築物結構與基礎耐震設計之參考。
In this study, the seismic responses of buildings with pile and raft foundations on liquefiable ground were investigated using shaking table tests on their scaled physical models. The pile was modeled by a bottom-fixed single aluminum pipe, whereas the raft foundation model was designed to be fully compensated. The superstructure of each building model was an aluminum pipe with a steel block on its top. The input motions included sinusoids and real earthquake records. After the ground model was liquefied and much degraded, its near-surface acceleration amplitude decreased and exhibited a phase lag relative to the table motion; meanwhile, the pile-foundation building however showed certain amplification of its roof acceleration with noticeable shift of the predominant frequency . The raft-foundation building experienced resonance before liquefaction because its natural frequency was close to the excitation frequency; whereas the magnitude and predominant frequency of its seismic response dropped significantly after liquefaction because of soil degradation. Notably, the raft-foundation building tipped over after the first test with severe liquefaction. The flexural strains along the pile indicated double-curvature bending, and the peak bending moment shifted toward the fixed end of pile after liquefaction with the inflection point moving upward. Moreover, liquefaction also led to larger relative displacement between the pile and soil and converted the soil reaction from resistance to loading.
1.賴聖耀、陳志芳、林炳森、張文忠、張啟文、魏銘忠、鄭光廷,「現地模擬地震之液化試驗與碼頭動態監測研究」,交通部運輸研究所,2007。
2.林昌良,「飽和砂中模型樁之側向載重試驗」,國立台灣大學土木工程研究所,碩士論文,2011。
3.邱吉爾,「以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應」,國立中央大學土木工程研究所,碩士論文 ,2012。
4.李岳霖,「位於液化地盤樁基礎之離心模型振動台試驗在不同r_u時樁之p-y曲線」,國立中央大學土木工程研究所,碩士論文,2016。
5.薛惠文,「縮尺比例套筒式基礎離岸風機結構模型振動台實驗研究」,國立成功大學土木工程研究所,碩士論文,2019。
6.李宜庭,「液化地盤中群樁基礎縮尺模型振動台試驗」,國立成功大學土木工程研究所,碩士論文,2020。
7.李喬茵,「縮尺模型樁受震時之樁土互制反應」,國立成功大學土木工程研究所,碩士論文,2020。
8.林楷席,「基樁受液化側潰作用之物理模型試驗」,國立成功大學土木工程研究所,碩士論文,2024。
9.曾俊豪,「以振動台試驗探討土壤液化時地下管線之上浮效應」,國立成功大學土木工程研究所,碩士論文,2024。
10.黃俊鴻、張書維、徐雅涵、洪汶宜,「低矮建築物使用小口徑樁之抗液化效果:離心模型試驗」,中國土木水利工程學刊,第36卷,第2期,第151-162頁,2024。
11.內政部,建築物耐震設計規範及解說,台內國字第1130801422號令修訂,2024。
12.Hazen, A., Hydraulic Fill Dams, Transactions of the American Society of Civil Engineers, 83, 1717–1745, 1920.
13.Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage, Franz Deuticke, Leipzig-Wien, 1925.
14.Casagrande, A., Characteristics of cohesionless soils affecting the stability of slopes and earth fills, Journal of the Boston Society of Civil Engineers, reprinted in Contributions to Soil Mechanics, Boston Society of Civil Engineers, 257–276, 1936.
15.Chang, Y. L., Discussion on Lateral pile-loading tests, Trans., ASCE, Paper No. 1959, 272–278, 1937.
16.Hetényi, M., Beams on Elastic Foundations, University of Michigan Press, Ann Arbor, MI, 1946.
17.Mogami, T., The behavior of soil during vibration, Proceedings of the 3rd International Conference on Soil Mechanics and Foundations Engineering, Vol. 1, 152–155, 1953.
18.De Alba, P., Chan, C.K., and Seed, H.B., Determination of soil liquefaction characteristics by large-scale laboratory tests, Report No. EERC 75-14, Earthquake Engineering Research Center, University of California at Berkeley, 1975.
19.Poulos, H.G., and Davis, E.N., Pile Foundation Analysis and Design, John Wiley Sons, New York, 1980.
20.Dobry, R., Liquefaction of Soils During Earthquakes, Report No. CETS-EE-001, National Research Council, Committee on Earthquake Engineering, Washington, DC, USA, 1985.
21.Ishihara, K., Stability of natural deposits during earthquakes, The 11th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, 321–376, 1985.
22.Sladen, J.A., D’hollander, R.D., and Krahn, J., The liquefaction of sands, a collapse surface approach, Canadian Geotechnical Journal, Vol. 22, No. 4, 564–578, 1985.
23.Hamada, M., Large ground deformations and their effects on lifelines: 1964 Niigata earthquake, in: Hamada, M., O'Rourke, T.D. (eds), Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Vol. 1, Japanese Case Studies, Technical Report NCEER-92-0001, Chapter 3, 1992.
24.Zeghal, M., and Elgamal, A.W., Analysis of Site Liquefaction Using Earthquake Records, Journal of Geotechnical Engineering, ASCE, Vol. 120, No. 6, 996–1017, 1994.
25.Wilson, D.W., Soil–Pile Superstructure Interaction at Soft and Liquefying Soil Sites, Ph.D. dissertation, University of California, Davis, California, USA, 1998.
26.Kudo, K., Uetake, T., and Kanno, T., Re-evaluation of Nonlinear Site Response during the 1964 Niigata Earthquake Using the Strong Motion Records at Kawagishi-cho, Niigata City, 12th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand, Paper No. 0969, 2000.
27.Kostadinov, M.V., and Towhata, I., Assessment of Liquefaction-Inducing Peak Ground Velocity and Frequency of Horizontal Ground Shaking at Onset of Phenomenon, Soil Dynamics and Earthquake Engineering, Vol. 22, No. 4, 309–322, 2002.
28.Rollins, K.M., Gerber, T.M., Lane, J.D., and Ashford, S.A., Lateral Resistance of a Full-Scale Pile Group in Liquefied Sand, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 1, 115–125, 2005.
29.Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 136, No. 1, 151–164, 2010.
30.Kramer, S.L., Hartvigsen, A.J., Sideras, S.S., and Ozener, P.T., Site Response Modeling in Liquefiable Soil Deposits, 4th IASPEI / IAEE International Symposium, Santa Barbara, CA, 2011.
31.Bhattacharya, S., and Tokimatsu, K., Collapse of Showa Bridge revisited, International Journal of Geoengineering Case Histories, Vol. 3, No. 1, 24–35, 2013.
32.Hung, W.Y., Lee, C.J., Chung, W.Y., Tsai, C.H., Chen, T., Huang, C.C., and Wu, Y-C., Seismic Behavior of Pile in Liquefiable Soil Ground by Centrifuge Shaking Table Tests, Journal of Vibroengineering, Vol. 16, No. 6, 2712–2721, 2014.
33.Ju, S.H., Huang, B.Y., Ni, S.H., Liu, K.Y., Ko, Y.Y., Hsu, S.Y., Chang, Y.W., Lu, L.Y., and Lin, G.L., Brief Introduction of Shaking Table Test of 1/25 Scale Model of Offshore Wind Turbine with Jacket Foundation, International Conference in Commemoration of 20th Anniversary of the 1999 Chi-Chi Earthquake, Taipei, Taiwan, 2019.
34.Ko, Y.Y., and Chen, C.H., On the Variation of Mechanical Properties of Saturated Sand during Liquefaction Observed in Shaking Table Tests, Soil Dynamics and Earthquake Engineering, Vol. 129, Article 105946, 2020.
35.Ko, Y.Y., and Li, Y.T., Response of a Scale Model Pile Group for a Jacket Foundation of an Offshore Wind Turbine in Liquefiable Ground during Shaking Table Tests, Earthquake Engineering and Structural Dynamics, Vol. 49, No. 15, 1682–1701, 2020.
36.Lin, G.L., Lu, L.Y., Lei, K.T., Liu, K.Y., Ko, Y.Y., and Ju, S.H., Experimental Study on Seismic Vibration Control of an Offshore Wind Turbine with TMD Considering Soil Liquefaction Effect, Marine Structures, Vol. 77, Article 102961, 2021.
37.Orang, M.J., Motamed, R., Prabhakaran, A., and Elgamal, A., Large-Scale Shake Table Tests on a Shallow Foundation in Liquefiable Soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 147, No. 1, Article 04020152, 2021.
38.Chu, M.C., and Louis Ge, Stiffness degradation of coarse and fine sand mixtures due to cyclic loading, Engineering Geology, 288, Article 106155, 2021.
校內:2029-08-01公開