| 研究生: |
張哲維 Chang, Jer-Wei |
|---|---|
| 論文名稱: |
氧化鋅螢光材料及氧化鋅奈米線之研製及其特性探討 The Synthesis and Characteristics of ZnO Phosphors and ZnO Nanowires |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 螢光粉 、氧化鋅 、奈米線 |
| 外文關鍵詞: | ZnO, phosphor, nanowire |
| 相關次數: | 點閱:56 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅具有寬能隙(3.36eV)的特性,為II-VI族化合物半導體成員之ㄧ,在商業上經常做為螢光粉使用,同時也應用在薄膜電激發元件上。其優異的發光特性,且可發出可見光使其適合作為螢光材料,主要用於顯示器元件及照明光源上。
本論文利用固態反應法製備高品質的氧化鋅摻雜鉺及氧化鋅摻雜釤螢光粉體,並利用液相法製備氧化鋅奈米線,使用X光繞射、光激發光譜、掃描式電子顯微鏡、穿透式電子顯微鏡及拉曼光譜等量測來探討螢光體的特性與品質,藉由改變不同實驗參數得到預期的效果。
由實驗顯示,摻雜鉺之氧化鋅在燒結溫度為1000℃時,以摻雜濃度1%時有最佳之發光強度,在攙雜濃度為8%時有最大之發光頻寬具有近白光的發光特性;摻雜釤之氧化鋅在濃度5%時有最佳發光強度;本實驗也成功的在150℃合成出氧化鋅奈米線。
Zinc oxide with high energy band gap (3.36eV) is one of II-VI compound semiconductors. It is usually used as phosphor and applied as thin film electroluminescence device. Zinc oxide phosphor has much attention due to its excellent luminescence properties and can emit visible light. The major applications of zinc oxide phosphor are display device and light source.
In this report, we use solid state synthesis method to obtain high quality ZnO:Er and ZnO:Sm phosphors and use liquid synthesis to prepare ZnO nanowires. In order to discuss the characteristics and quality of these phosphors, they were characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and Raman shift spectroscopy. By this measurements, we can change different experiment parameters to get preferred result.
According to the experimental results, ZnO:Er has the best emission intensity at 1% doping concentration as sintering at 1000℃. At 8% doping concentration, we observe the widest band emission ,and it is near white light emission. ZnO:Sm has the best emission intensity at 5% doping concentration. And we successfully synthesizes ZnO nanowires at 150℃.
[1] 楊俊瑜,電子產業用螢光材料之應用調查,工業技術研究院:新竹,1992。
[2] 衣立新,無機薄膜電致發光顯示的研究進度,大陸北方交通大學光電子技術研究所,2000。
[3] 陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究,台灣科技大學 材料科技研究所
[4] Wei Chen, Ramaswami Sammynaiken and Yining Huang, Journal of Applied Phys. 89 (2), 1120 (2001).
[5] L.P. Wang and G.Y. Hong, Materials Research Bulletin 35, 695 (2000).
[6] N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, T.E. Mallouk, Materials Science and Engineering B69-70, 411 (2000).
[7] Robert Vacassy, Stefan M. Scholz, Joydeep Dutta, Christopher John George Plummer, Raymond Houriet and Heinrich Hofmann, J. Am. Ceram. Soc. 81 (10), 2669 (1998).
[8] B. Bhattacharjee, D. Ganguli, S. Chaudhuri, A.K. Pal, Thin Solid Films 422, 98 (2002).
[9] J.F. Suyver, S.F. Wuister, J.J. Kelly and A. Meijerink, Nano Lett. 1(4), 429 (2001).
[10] S. Wageh, Zhao Su Ling and Xu Xu-Rong, Journal of Crystal Growth 255, 332 (2003).
[11] Heesun Yang and Paul H. Hollway, Journal of applied Physics 93 (1), 586 (2003) .
[12] F.H. Su, B.S. Ma, Z.L. Fang, K. Ding, G.H. Li and W. Chen, J. Phys: Condens. Matter 14, 12657 (2002).
[13] S. Wageh, Liu Shu-Man, Fang Tian You and Xu Xu-Rong, Journal of Luminescence 102-103, 768 (2003).
[14] Masanori Tanaka, Journal of Luminescence 100, 163 (2002).
[15] R. N. Bhargave, D. Gallagher, X. Hong and A. Nurmikko, Physical Review Letters 72 (3), (1994).
[16] Ageeth A. Bol, Joke Ferwerda, Jaap A.Bergwerff and Andries Meijerink, Journal of Luminescence 99, 325 (2002).
[17] Ping Yang, Mengkai Lu, Dong Xu, Duolong Yuan and Guangjun Zhou, Journal of Luminescence 93, 101 (2001).
[18] Y. Nakaoka, Y. Nosaka, Langmuir 13, 708 (1997).
[19] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K.Diesner, A. Chemseddine, A. Eychmuller, H. Weller, J. Phys. Chem. 98, 7665 (1994).
[20] J. C. Sanchez-Lopez, A. Justo and A. Fernandez, Langmuir 15, 7822 (1997).
[21] X.T. Zhang, Y.C. Liu, Thin Solid Films 413 (2002) 257-261.
[22] E. Alves, E. Rita, U. Wahl, Nuclear Instruments and Mathods in Physics Research 206 (2003) 1047-1051.
[23] Shuji Komuro, Takitaro Morikawa, Journal of Applied Physics, 89, 7 (2001).
[24] T. Fukudome, A. Kainaka, H. Isshiki, R. Saito, S. Yugo, T. Kinura, Nuclear Instruments and Mathods in Physics Research B 206 (2003) 287-290.
[25] X.Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, T. Sugano, Journal of Luminescence, 87-89 (2000).
[26] Xin Wang, Xianggui Kong, Guiye Shan, J. Phys. Chem. B, 108, (2004).
[27] Ronfard-Haret, J.-C. , Kouyate, D. Kossanyi, J. Solid State Communications, v 79, n 1, Jul, 1991.
[28] Kouike D., Journal of Luminescence, v 55, n 4, Jul, 1993, p 209-216, 92 (2001) 57-63.
[29] Bachir S., Journal of Luminescence, v 75, n 1, Jul, 1997, p 35-49
[30] Yuanhua Lin, Zilong Tang, and Zhongtai Zhang, “Preparation of Nanometer Zinc Oxide Powder by Plasma Pyrolysis Technology and Their Application”, J. Am. Ceram. Soc, 83[11], 2869-2871 (2000).
[31] Qiping Zhong and Egon Matijevic, “Preparation of uniform zinc oxide colloids by controlled double-jet precipitation”, J. Mater. Chem., 6, 3, 443, (1996).
[32] 葉集賢,”變阻器基材之氧化鋅陶瓷粉體水熱法製備”, 碩士論文,台灣大學化工研究所,1997年。
[33] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996).
[34] Bixia Lin and Zhuxi Fu, Yunbo Jia, “Green Luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett.,79[7], 943-945 (2001).
[35] 蘇勉增,世康,發光材料,第四卷,1~39頁。
[36] G. Blasse and B.C Grabmaier, Luminescent Materials,Springer Verlag, Berlin Heidelberg, Germany (1994).
[37] G.Blassr and B.C.Grabmaier, “Luminescence Material”, 19, Springer,Berlin.D.L.Dexter, Chem. Phys.22 (6), 1063 (1954).
[38] B.Walter, Ann. Physic 36, 502, 518 (1889).
[39] P.D.Johnson and F.E. Williams, J. Chem. Phys.18, 1477 (1950).
[40] M. Andres Verges, A. Mifsud and C. J. Serna, J. Chem. Soc. Faraday Trans, 86, 6, 959 (1990).
[41] Kazumi Fujita, Keizo Matsuda, “Formation of Zinc Oxide by Homogeneous Precipitation Method”, Bull. Chem. Soc. Jpn.,65,2270 (1992).
[42] Yoshio Sakka, Kohmei Halada, and Eiichi Ozawa, Ceram. Trans., v3, 31 (1990).
[43] M. E. V. Costa and J. L. Baptista, “Characteristics of Zinc Oxide Powder Precipitated in the Presence of Alcohol and Amines”, J. of Eurp. Ceram. Soc., 11, 275-281 (1993).
[44] Kiichiro Kamata and Kikuo Miyokawa, “Synthesis of Zinc Oxide Powder by Hydrolysis of BIS(Acetylacetonato)-Zinc(Ⅱ) in Aqueous Solution”, Chemitry Letters, 2021-2022 (1984).
[45] Corrie L. Carnes, and Kenneth J. Klabunde, “Synthesis, Isolation, and Chemical Reactivity Studies of Nanocrystalline Zinc Oxide”, Langmuir 16, 3764-3772 (2000).
[46] Tito Trindade and Paul O’Brien, “Preparation of Zinc Oxide and Zinc Sulfide Powder by Controlled Precipitation from Aqueous Solution”, J. Mater. Chem., 4(10), 1611-1617 (1994).
[47] M. Singhal, V. Chhabra P. Kang and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion”, Materials Research Bulletin, 32[2], 239-247 (1997).
[48] B. P. Lim and J. Wang, S. C. Ng, C. H. Chew and L. M. Gan, “A Bicontinuous Microemulsion Route to Zinc Oxide Powder”, Ceramics international, 24, 205-209 (1998).
[49] 陳順成,The Synthesis and Characteristics of ZnS and ZnO Nanoparticles, 國立成功大學電機研究所 (2004)
[50] Choi, Jeong Duk, Choi, Gyeong Man, Sensors and Actuators, B: Chemical, v69, n1, p120-126, (2000)
[51] Koshizaki, Naoto, Sensors and Actuators, B: Chemical, v66, n1, p119-121, (2000)
[52] Nanto, H., Morita. T, Habara. H., Sensors and Actuators, B: Chemical, vB36, n1~3 pt2, p384-387, (1996)
[53] Kang Xueya, Minjing Tu; Ming Zhang; Tiandiao Wang Diffusion and Defect Data Pt.B: Solid State Phenomena, v 99-100, Functional Nanomaterials for Optoelectronics and other Applications, p 127-132(2004)
[54] Nobrega, Maria Cecilia S., Mannheimer, Walter A. Source: Journal of the American Ceramic Society, v 79, n 6, Jun, p 1504-1508(1996)
[55] Wang Fang, Yang, Bao-He, Guangdianzi Jiguang/Journal of Optoelectronics Laser, v 16, n 1, January, p 28-31(2005)
[56] Sugai K., Ohmori K., Takakuni H., Ultrasonics Symposium Proceedings, v 1, p 269-274(1990)
[57] King Simon L., Gardeniers J.G.E., Boyd, Ian W., Applied Surface Science, v 96-98, Apr 2, Symposium F: 3rd International Conference on Laser Ablation, p 811-818 (1996)
[58] Shikata S., Nakahata H., Higaki K., Hachigo A., Proceedings of the IEEE Ultrasonics Symposium, v 1, p 277-280(1993)
[59] Makino T., Chia C.H., Segawa Y., Applied Surface Science, v 189, n 3-4, p 277-283(2002)
[60] Synthesis and photoluminescence studies on ZnO nanowires, Banerjee, D. (Department of Physics, Boston College); Lao, J.Y.; Wang, D.Z.; Huang, J.Y.; Steeves, D.; Kimball, B.; Ren, Z.F., Nanotechnology, v 15, n 3, p 404-409(2004)
[61] Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires, Zhang, Ye; Jia, Hongbo; Luo, Xuhui; Chen, Xihong; Yu, Dapeng; Wang, Rongming Source: Journal of Physical Chemistry B, v 107, n 33, p 8289-8293(2003)
[62] UV photoresponse of single ZnO nanowires, Heo, Y.W.; Kang, B.S.; Tien, L.C.; Norton, D.P.; Ren, F.; Roche, J.R.L.A.; Pearton, S.J. Source: Applied Physics A: Materials Science and Processing, v 80, n 3, p 497-499(2005)