簡易檢索 / 詳目顯示

研究生: 王佳樂
Aprillia, Happy
論文名稱: 確定性和概率性短期負載與太陽光電發電預測方法
Deterministic and Probabilistic Short-Term Forecasting Approaches for Load Demands and PV Generation
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 104
中文關鍵詞: 負荷預測優化算法光伏發電預測概率負荷預測.
外文關鍵詞: load forecasting, optimization algorithm, photovoltaic power forecasting, probabilistic load forecasting
相關次數: 點閱:101下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出了能量管理系統(EMS)中負荷需求和光伏發電的確定性和概率性預測方法。提出了一種可靠的確定性預測算法,用於儘管負荷需求和PV發電都繼承了非平穩和季節性模式,但仍可針對每種負荷和PV發電獲得準確的預測結果。因此,鯨魚優化算法–離散小波變換–多元線性回歸(WOA-DWT-MLR)被用作預測算法,在系統和最終用戶負載數據集上進行了測試,並通過平均絕對百分比誤差(MAPE)進行了評估。對於光伏發電,使用卷積神經網絡-Salp群算法(CNN-SSA),在台灣南部的200 kW光伏電站中進行測試,並通過平均相對誤差(MRE)和MAPE進行評估。
    與其僅通過均方根誤差(MRE)和平均絕對平均百分比(MAPE)來解釋預測準確性,不如對預測結果將要發生的預期風險進行觀察。 作為概率方法,構建具有風險評估指數(RAI)的預測區間(PI)來理解負荷需求中的不確定性行為。 PI由分位數回歸隨機森林(QRRF)建模,並輔以概率圖和風險評估指數(RAI)。概率映射用於捕獲每日負荷的每小時分佈,而RSS用於通過具有相應的預測結果來計算明天可能發生的風險。在系統數據集上測試了建議的概率負荷預測。
    所提出的預測方法有利於EMS的運行。仿真結果表明,所提出的短期確定性預測方法可以有效地提高預測準確性,而所提出的短期概率負荷預測可以從風險嚴重性評分中間接量化第二天可能發生的不確定性,從而更加清晰解釋預測結果。

    As the forecasting algorithm is necessary to provide prosumer’s load profile in active contribution in energy management system, this dissertation proposes the deterministic and probabilistic short-term forecasting approaches for load demand and photovoltaic (PV) power generation. To provide a computational effective and high accuracy forecasting performance, whale optimization algorithm – discrete wavelet transforms – multiple linear regression (WOA-DWT-MLR) are used as short-term load forecasting algorithms, tested on both system- and end-user load data sets. Like load pattern, the PV generation also inherits uncertain behavior and seasonal pattern. Thus, salp swarm algorithm - convolutional neural network (SSA-CNN) is used to extract the optimal features of PV power generation without time-consuming trial and error in CNN hyperparameter tuning.
    Instead of interpreting the forecasting accuracy only by mean root error (MRE) and mean absolute average percentage (MAPE), an observation about the intended risk that is going to be happened by the forecasting results are studied. As the probabilistic approach, a prediction interval (PI) with a risk assessment index (RAI) is constructed to comprehend the uncertainty behavior in load demand. The PI is modeled by quantile regression random forest (QRRF), complemented by the probability mapping and risk Assessment Index (RAI). Probability mapping is used to capture the hourly distribution of daily load while RAI is used to calculate the risk that might happen tomorrow by having the corresponding forecasting results.
    The proposed methods are tested using data set of Independent System Operator New England (ISO-NE), Shalun office, and a 200-kW PV power plant in south Taiwan to represent system load, end-user load, and PV power generation, respectively. The simulation results indicate that the proposed short-term deterministic forecasting approaches can effectively improve the forecasting accuracy, while the proposed short term probabilistic load forecasting can indirectly quantify the uncertainty that may happen on the next day without extensive computation time.

    TABLE OF CONTENTS 摘要 i ABSTRACT ii TABLE OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES ix LIST OF SYMBOLS x CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Review of Literatures 3 1.3 Research Objectives and Methods 8 1.4 Major Contributions 10 1.5 Organization of Dissertation 11 CHAPTER 2 SYSTEM DESCRIPTION AND ARCHITECTURE 12 2.1 System Descriptions and Architecture 12 2.2 Constructing a Reliable Forecasting Algorithm 14 2.2.1 Choice of Suitable Features of Forecasting Algorithm 15 2.2.1.1 Correlation Coefficient 18 2.2.1.2 Student T-test 18 2.2.2 Evaluation Metrics 18 2.3 Summary 19 CHAPTER 3 PROPOSED SHORT-TERM LOAD FORECASTING 20 3.1 Introduction 20 3.2 Discrete Wavelet Transform 20 3.3 Whale Optimization Algorithm 21 3.4 Optimal Signal Decomposition for Short Term Load Forecasting 23 3.5 Summary 26 CHAPTER 4 PROPOSED SHORT-TERM PHOTOVOLTAIC POWER FORECASTING 27 4.1 Introduction 27 4.2 Convolutional Neural Network 27 4.3 Salp Swarm Algorithm 29 4.4 CNN’s Predictors Arrangement 31 4.5 Training Results of the Proposed SSA-CNN 34 4.6 Summary 37 CHAPTER 5 PROPOSED PROBABILISTIC LOAD FORECASTING 38 5.1 Introduction 38 5.2 Interval Load Forecasting Review 38 5.3 The Proposed Probabilistic Load Forecasting 41 5.3.1 Input Variable Arrangement 42 5.3.2 Probability Map 42 5.3.3 Quantile Regression Random Forest 45 5.4 Risk Assessment Index 47 5.5 Training Stage of the Proposed PLF 49 5.6 Summary 54 CHAPTER 6 RESULTS AND DISCUSSIONS 55 6.1 Introduction 55 6.2 Simulation Settings and Test Systems 55 6.3 Simulation Results of Deterministic Load and PV Power Forecasting 56 6.3.1 WOA-DWT-MLR for STLF 57 6.3.1.1 Forecasting predictors arrangement 57 6.3.1.2 Benchmark Algorithms 60 6.3.1.3 Simulation results 61 6.3.1.3.1 Forecasting performance on system data set 62 6.3.1.3.2 Forecasting performance on end-user data set 64 6.3.2 SSA-CNN for STPVPF 71 6.3.2.1 Benchmark Algorithms 71 6.3.2.2 Simulation results 71 6.3.3 Summary 79 6.4 Simulation Results of Probabilistic Load Forecasting 80 6.4.1 Forecasting performance on working-day data set 80 6.4.2 Forecasting performance on special days 85 6.4.3 Evaluation using time-varying Markov chains 89 6.4.4 Summary 92 CHAPTER 7 CONCLUSIONS AND FUTURE PROSPECTS 94 7.1 Conclusions 94 7.2 Future Prospects 95 REFERENCES 96

    REFERENCES

    [1] A. Fleischhacker, H. Auer, G. Lettner, and A. Botterud, "Sharing solar PV and energy storage in apartment buildings: Resource allocation and pricing", IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3963-3973, 2019.
    [2] P. Chakraborty, E. Baeyens, P. Khargonekar, K. Poolla, and P. Varaiya, "Analysis of solar energy aggregation under various billing mechanisms", IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 4175-4187, 2019.
    [3] S. Gao, H. Jia, and C. Marnay, "Techno-economic evaluation of mixed AC and DC power distribution network for integrating large-scale photovoltaic power generation", IEEE Access, vol. 7, pp. 105019-105029, 2019.
    [4] H. Kusato, K. Mori, S.Yoshizawa, Y. Fujimoto, H. Asano, Y. Hayashi, A. Kawashima, S. Inagaki, and T. Suzuki, "Electric vehicle charge–discharge management for utilization of photovoltaic by coordination between home and grid energy management systems", IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3186-3197, 2019.
    [5] J. Armstrong and F. Collopy, "Error measures for generalizing about forecasting methods: Empirical comparisons", International Journal of Forecasting, vol. 8, no. 1, pp. 69-80, 1992.
    [6] D. B. Lobell, C. Bonfils, and P. B. Duffy, “Climate change uncertainty for daily minimum and maximum temperatures: A model inter-comparison,” Geophysical Research Letters, vol. 34, no. 5, pp. 1-5, Mar. 2007.
    [7] S. H. Begg, M. B. Welsh, and R. B. Bratvold, “Uncertainty vs. variability: What's the difference and why is it important?,” The SPE Hydrocarbon Economics and Evaluation Symposium, Houston, Texas, 2014, pp. 273-293.
    [8] M. Habib, A. Ladjici, E. Bollin, and M. Schmidt, "One-day ahead predictive management of building hybrid power system improving energy cost and batteries lifetime", IET Renewable Power Generation, vol. 13, no. 3, pp. 482-490, 2019.
    [9] X.Jin, T. Jiang, Y. Mu, C. Long, X. Li, H. Jia, and Z. Li, "Scheduling distributed energy resources and smart buildings of a microgrid via multi-time scale and model predictive control method", IET Renewable Power Generation, vol. 13, no. 6, pp. 816-833, 2019.
    [10] Y. He, F. Guang, and R. Chen, "Prediction of electricity demand of China based on the analysis of decoupling and driving force", IET Generation, Transmission & Distribution, vol. 12, no. 13, pp. 3375-3382, 2018.
    [11] B. Stephen, X. Tang, P. Harvey, S. Galloway, and K. Jennett, "Incorporating practice theory in sub-profile models for short term aggregated residential load forecasting", IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1591-1598, 2017.
    [12] I. Sajjad, G. Chicco, and R. Napoli, "Definitions of demand flexibility for aggregate residential loads", IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2633-2643, 2016.
    [13] C. Perfumo, J. Braslavsky, and J. Ward, "Model-based estimation of energy savings in load control events for thermostatically controlled loads", IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1410-1420, 2014.
    [14] S. Welikala, C. Dinesh, M. Ekanayake, R. Godaliyadda, and J. Ekanayake, "Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting", IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 448-461, 2019.
    [15] W. Kong, Z. Dong, D. Hill, F. Luo, and Y. Xu, "Short-term residential load forecasting based on resident behaviour learning", IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1087-1088, 2018.
    [16] G. Xie, X. Chen, and Y. Weng, "An integrated Gaussian process modeling framework for residential load prediction", IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7238-7248, 2018.
    [17] O. Erdinc, A. Tascikaraoglu, N. Paterakis, Y. Eren, and J. Catalao, "End-user comfort oriented day-ahead planning for responsive residential HVAC demand aggregation considering weather forecasts", IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 362-372, 2017.
    [18] H. T. Yang and J. T. Liao, "MF-APSO-based multiobjective optimization for PV system reactive power regulation", IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1346-1355, 2015.
    [19] J. Zhang, B. Hodge, S. Lu, H. F. Hamann, B. Lehman, J. Simmons, E. Campos, V. Banunarayanan, J. Black, and J. Tedesco, "Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting", Solar Energy, vol. 122, pp. 804-819, 2015.
    [20] M. Di Piazza, M. Luna, G. La Tona, and A. Di Piazza, "Improving grid integration of hybrid PV-storage systems through a suitable energy management strategy", IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 60-68, 2019.
    [21] Q. Nguyen, H. Padullaparti, K. Lao, S. Santoso, X. Ke, and N. Samaan, "Exact optimal power dispatch in unbalanced distribution systems with high PV penetration", IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 718-728, 2019.
    [22] M. De Giorgi, M. Malvoni, and P. Congedo, "Photovoltaic power forecasting using statistical methods: Impact of weather data", IET Science, Measurement & Technology, vol. 8, no. 3, pp. 90-97, 2014.
    [23] M. Raza, M. Nadarajah, and C. Ekanayake, "On recent advances in PV output power forecast", Solar Energy, vol. 136, pp. 125-144, 2016.
    [24] S. Sobri, S. Koohi-Kamali and N. Rahim, "Solar photovoltaic generation forecasting methods: A review", Energy Conversion and Management, vol. 156, pp. 459-497, 2018.
    [25] A. Mellit, A. Massi Pavan, and V. Lughi, "Short-term forecasting of power production in a large-scale photovoltaic plant", Solar Energy, vol. 105, pp. 401-413, 2014.
    [26] Q. Dai, T. Cai, S. Duan, and F. Zhao, "Stochastic modeling and forecasting of load demand for electric bus battery-swap station", IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1909-1917, 2014.
    [27] G. Sideratos and N. Hatziargyriou, "Probabilistic wind power forecasting using radial basis function neural networks", IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 1788-1796, 2012.
    [28] Y. Wang, N. Zhang, Y. Tan, T. Hong, D. Kirschen, and C. Kang, "Combining probabilistic load forecasts", IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3664-3674, 2019.
    [29] M. Rafiei, T. Niknam, J. Aghaei, M. Shafie-Khah, and J. Catalao, "Probabilistic load forecasting using an improved wavelet neural network trained by generalized extreme learning machine", IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6961-6971, 2018.
    [30] S. Sreekumar, K. Sharma, and R. Bhakar, "Gumbel copula based aggregated net load forecasting for modern power systems", IET Generation, Transmission & Distribution, vol. 12, no. 19, pp. 4348-4358, 2018.
    [31] X. Yang, X. Ma, N. Kang, and M. Maihemuti, "probability interval prediction of wind power based on KDE method with rough sets and weighted Markov chain", IEEE Access, vol. 6, pp. 51556-51565, 2018.
    [32] Y. Wang, Q. Chen, N. Zhang, and Y. Wang, "Conditional residual modeling for probabilistic load forecasting", IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7327-7330, 2018.
    [33] T. Ding, H. Liang, and W. Xu, "An analytical method for probabilistic modeling of the steady-state behavior of secondary residential system", IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2575-2584, 2017.
    [34] J. Xie, T. Hong, T. Liang, and C. Kang, “On normality assumption in residual simulation for probabilistic load forecasting”, IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1046-1053, 2017.
    [35] D. Saez, F. Avila, D. Olivares, C. Canizares, and L. Marin, "Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids", IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 548-556, 2015.
    [36] J. Milanovic and Y. Xu, "Methodology for estimation of dynamic response of demand using limited data", IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1288-1297, 2015.
    [37] W. Labeeuw and G. Deconinck, "Residential electrical load model based on mixture model clustering and Markov models", IEEE Transactions on Industrial Informatics, vol. 9, no. 3, pp. 1561-1569, 2013.
    [38] M. N. S. K. Shabbir, M. Z. Ali, M. S. A. Chowdhury, and X. Liang, "A probabilistic approach for peak load demand forecasting," 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec City, QC, 2018, pp. 1-4.
    [39] T. Hong, J. Wilson, and J. Xie, "Long term probabilistic load forecasting and normalization with hourly information", IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 456-462, 2014.
    [40] B. Liu, J. Nowotarski, T. Hong, and R. Weron, "Probabilistic load forecasting via quantile regression averaging on sister forecasts", IEEE Transactions on Smart Grid, pp. 1-1, 2015.
    [41] M. Alamaniotis and L. H. Tsoukalas, “Multi-kernel assimilation for prediction intervals in nodal short term load forecasting,” The 19th International Conference on Intelligent System Application to Power Systems (ISAP), San Antonio, Texas, 2017, pp. 1-6.
    [42] H. Mori and M. Ohmi, “Probabilistic short-term load forecasting with Gaussian processes,” The 13th International Conference on Intelligent Systems Application to Power Systems, Arlington, VA, 2005, pp. 6.
    [43] T. Gneiting and M. Katzfuss, “Probabilistic forecasting”, Annual Review of Statistics and Its Application, vol. 1, no. 1, pp. 125-151, 2014.
    [44] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look into the future,” Intl. J. of Forecasting, vol. 30, no. 4, pp. 1030-1081, 2014.
    [45] J. Boland and A. Grantham, “Nonparametric conditional heteroscedastic hourly probabilistic forecasting of solar radiation,” J-Multidisciplinary Scientific Journal, vol. 1, no. 1, pp. 174-191, 2018.
    [46] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu and J. He, “Short-term load forecasting with deep residual networks,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3943-3952, 2019.
    [47] S. Mallat, "A theory for multiresolution signal decomposition: the wavelet representation", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.
    [48] S. Mirjalili and A. Lewis, "The whale optimization algorithm", Advances in Engineering Software, vol. 95, pp. 51-67, 2016.
    [49] Z. H. Zhan, J. Zhang, Y. Li, and H. Chung, "Adaptive particle swarm optimization", IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009.
    [50] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Advances in Engineering Software, vol. 114, pp. 163-191, 2017.
    [51] N. Meinshausen, “Quantile regression forests,” Journal of Machine Learning Research, vol. 7, no. 1, pp. 983–999, Jun. 2006.
    [52] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001.
    [53] X. Gao, X. Li, B. Zhao, W. Ji, X. Jing, and Y. He, "Short-term electricity load forecasting model based on EMD-GRU with feature selection", Energies, vol. 12, no. 6, p. 1140, 2019.
    [54] ISO-NE Generic Data. Available online: http://www. energyonline.com/ Data/GenericData.aspx?DataId=16Biographies (accessed on 26 April 2020).
    [55] Time and Date. Available online: https://www.timeanddate.com (accessed on 26 April 2020).
    [56] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol. 32, no. 3, pp. 896-913, 2016.
    [57] A. Mellit and A. Pavan, "A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy", Solar Energy, vol. 84, no. 5, pp. 807-821, 2010.
    [58] A. Mellit, A. Massi Pavan, and V. Lughi, "Short-term forecasting of power production in a large-scale photovoltaic plant", Solar Energy, vol. 105, pp. 401-413, 2014.
    [59] K. Brecl and M. Topič, "Photovoltaics (PV) system energy forecast on the basis of the local weather forecast: problems, uncertainties and solutions", Energies, vol. 11, no. 5, p. 1143, 2018.
    [60] S. Kim, J. Jung, and M. Sim, "A two-step approach to solar power generation prediction based on weather data using machine learning", Sustainability, vol. 11, no. 5, p. 1501-1517, 2019.
    [61] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, "A state-of-the-art survey on deep learning theory and architectures", Electronics, vol. 8, no. 3, p. 292, 2019.
    [62] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, "Numerical recipes in C-The art of scientific computing", Mathematics of Computation, vol. 52, no. 185, p. 243-254, 1989.
    [63] R. E. Walpole and R. H. Myers, "Probability and statistics for engineers and scientists: Second edition", New York: Macmillan Publishing. 1978.
    [64] D. Hubel and T. Wiesel, "Receptive fields of single neurones in the cat's striate cortex", The Journal of Physiology, vol. 148, no. 3, pp. 574-591, 1959.
    [65] C. Huang and P. Kuo, "A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities", Sensors, vol. 18, no. 7, p. 2220, 2018.
    [66] V. Suresh, P. Janik, J. Rezmer, and Z. Leonowicz, "Forecasting solar PV output using convolutional neural networks with a sliding window algorithm", Energies, vol. 13, no. 3, p. 723, 2020.
    [67] Y. Wang, D. Gan, N. Zhang, L. Xie, and C. Kang, “Feature selection for probabilistic load forecasting via sparse penalized quantile regression,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 1, pp. 1200-1209, Jul. 2019.
    [68] M. N. S. K. Shabbir, M. Z. Ali, X. Liang, and M. S. A. Chowdhury, “A probabilistic approach considering contingency parameters for peak load demand forecasting,” Canadian Journal of Electrical and Computer Engineering, vol. 41, no. 4, pp. 224-233, Fall 2018
    [69] S. N. Ahmed, “Physics and engineering of radiation detection”, 2nd edition. Chapter 9 - Essential statistics for data analysis, Amsterdam: Elsevier, 2014.
    [70] T. Carriere, C. Vernay, S. Pitaval, and G. Kariniotakis, "A novel approach for seamless probabilistic photovoltaic power forecasting covering multiple time frames", IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2281-2292, 2020.
    [71] M. Mottahedi, A. Mohammadpour, S. Amiri, D. Riley, and S. Asadi, "Multi-linear regression models to predict the annual energy consumption of an office building with different shapes", Procedia Engineering, vol. 118, pp. 622-629, 2015.
    [72] L. Hernández, C. Baladrón, J. Aguiar, L. Calavia, B. Carro, A. Sánchez-Esguevillas, F. Pérez, Á. Fernández, and J. Lloret, "Artificial neural network for short-term load forecasting in distribution systems", Energies, vol. 7, no. 3, pp. 1576-1598, 2014.
    [73] J. Zhong, L. Liu, Q. Sun, and X. Wang, "Prediction of photovoltaic power generation based on general regression and back propagation neural network", Energy Procedia, vol. 152, pp. 1224-1229, 2018.
    [74] J. Zeng and W. Qiao, "Short-term solar power prediction using a support vector machine", Renewable Energy, vol. 52, pp. 118-127, 2013.
    [75] S. Nam and J. Hur, "Probabilistic forecasting model of solar power outputs based on the naïve Bayes classifier and kriging models", Energies, vol. 11, no. 11, p. 2982, 2018.
    [76] Y. Miyazaki, Y. Kameda, and J. Kondoh, "A power-forecasting method for geographically distributed PV power systems using their previous datasets", Energies, vol. 12, no. 24, p. 4815, 2019.
    [77] C. Huang and P. Kuo, "Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting", IEEE Access, vol. 7, pp. 74822-74834, 2019.
    [78] R. Wan, S. Mei, J. Wang, M. Liu, and F. Yang, "Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting", Electronics, vol. 8, no. 8, p. 876, 2019.
    [79] H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Liang, Z. Wei, and G. Sun, "Hybrid method for short-term photovoltaic power forecasting based on deep convolutional neural network", IET Generation, Transmission & Distribution, vol. 12, no. 20, pp. 4557-4567, 2018.
    [80] M. Qader and I. Qamber, "Long-term load forecasting for the Kingdom of Bahrain using Monte Carlo method", Journal of the Association of Arab Universities for Basic and Applied Sciences, vol. 9, no. 1, pp. 12-17, 2010.
    [81] I. Kanda and J. M. Q. Veguillas, “Data preprocessing and quantile regression for probabilistic load forecasting in the GEFCom2017 final match,” International Journal of Forecasting, vol. 35, no. 4, pp. 1460-1468, Oct.-Dec. 2019.
    [82] B. Lê Cook and W.G. Manning, “Thinking beyond the mean: A practical guide for using quantile regression methods for health services research,” Shanghai Archives of Psychiatry, vol 25, no. 1 pp. 55-59, Apr. 2013.
    [83] T. Zhao, J. Wang, and Y. Zhang, “Day-ahead hierarchical probabilistic load forecasting with linear quantile regression and empirical copulas", IEEE Access, vol. 7, pp. 80969-80979, Jun. 2019.
    [84] L. Alfieri and P. De Falco, “Wavelet-based decompositions in probabilistic load forecasting,” IEEE Transactions on. Smart Grid, vol. 11, no. 2, pp. 1367-1376, Aug. 2020.
    [85] A. Khosravi, S. Nahavandi, D. Srinivasan, and R. Khosravi, “Constructing optimal prediction intervals by using neural networks and bootstrap method,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 8, pp. 1810-1815, Aug. 2015.
    [86] B. Chen and J. Li, “Combined probabilistic forecasting method for photovoltaic power using an improved Markov chain”, IET Generation, Transmission & Distribution, vol. 13, no. 19, pp. 4364-4373, 2019.
    [87] H. T. Yang, C. M. Huang, and C. L. Huang, "Identification of ARMAX model for short term load forecasting: an evolutionary programming approach", IEEE Transactions on Power Systems, vol. 11, no. 1, pp. 403-408, 1996.
    [88] C. Cortes and V. Vapnik, "Support-vector networks", Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
    [89] Y. Chen, P. Xu, Y. Chu, W. Li, Y. Wu, L. Ni, Y. Bao, and K. Wang, "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings", Applied Energy, vol. 195, pp. 659-670, 2017.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE