| 研究生: |
莊秉儒 Chuang, Bing-Ru |
|---|---|
| 論文名稱: |
氫離子源輔助濺鍍富矽氧化物於記憶體之研究 Research of silicon-rich oxide films prepare by hydrogen ion-source assisted sputtering for memory application |
| 指導教授: |
施權峰
Shih, Chuan-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 富矽氧化物 、記憶體 、氫離子源 |
| 外文關鍵詞: | silicon-rich oxide, memory, hydrogen ion source |
| 相關次數: | 點閱:127 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中詳述富矽氧化物薄膜於記憶體之應用,富矽氧化物薄膜(Silicon-rich-oxide, SRO)具有高溫退火後能形成矽奈米晶,以及本身具有高密度的矽懸鍵兩個特點,因此可以用於製作儲存電荷用途的MOS電容記憶體之結構。其儲存機制可分為量子侷限效應和缺陷的捕獲載子兩大類。
離子源功用為加速離子氣體撞擊薄膜表面,或藉由和電漿交互作用影響鍍膜過程,本研究使用氫氣離子源輔助鍍膜,目的在於對矽奈米晶的結晶性和矽氧相關缺陷態做調變,藉由C-V曲線的量測來觀察元件儲存電荷能力的差異性,並輔以高解析穿隧式電子顯微鏡(Transmittance electron microscopy, TEM)、光致螢光(Photoluminescence, PL)、X光光電子能譜(X-ray Photoelectron Spectrometer, XPS)分析來討論加入氫離子源後其結晶性與缺陷態的變化,最後提出一合理的解釋來解釋其現象。
Application of silicon-rich oxide (SRO) films for memory is discussion in detail. SRO films can be fabricated memory device because of it can form silicon nanocrystal after high temperature annealing and it have high density silicon dangling bond. The mechanism of charging effect are quantum confinement effect and defect state trap carriers.
Function of the ion source is accelerated ion gas to impact film. Hydrogen ion source can control and modify SRO charging layer property by destroy Si-Si bond and passivation silicon dangling bond. The size of the silicon clusters are controlled and modified by the Hydrogen ions. The hydrogen ion source assisted sputtering phenomenon and mechanism is also thoroughly explained and discussed.
[1] S. Prezio, A. Anopchenko, Z. Gaburro, L. Pavesi, G. Pucker, L. Vanzetti, and P. Bellutti, “Electrical conduction and electroluminescence in nanocrystalline silicon-based light emitting devices,” J. Appl. Phys., 104, 063103 (2008)
[2] T.V. Torchynska, and Yu. V. Vorobiev, Nanocrystals and quantum dots of group IV semiconductors, (Stevenson Ranch, Calif. : American Scientific Publishers), c2010.
[3]S.M. Sze and Kwok K. Ng, Physics of semiconductor devices, (Hoboken, N.J. : Wiley-Interscience), c2007.
[4] E.H. Nicollian and J.R. Brews, MOS (Metal-oxide-semiconductor) physics and technology, (Hoboken, N.J. : Wiley-Interscience), 2003.
[5] Dieter K. Schroder, Semiconductor material and device characterization, (New York : Wiley), c1998.
[6] T. Uchino, M. Takahashi, and T. Yoko, “Formation and decay mechanisms of electron-hole pairs in amorphous SiO2,” Appl. Phys. Lett., 80, 1147 (2002)
[7] S. Guha “Characterization of Si+ ion-implanted SiO2 films and silica glasses,” J. Appl. Phys., 84, 5210, (1998)
[8] T. W. Kim, C. H. Cho, B. H. Kim, and S. J. Park, “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3,” Appl. Phys. Lett., 88, 123102 (2006).
[9] M. Kulakci, U. Serincan, and R. Turan, “Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation,” Semicond. Sci. Technol. 21, 1527 (2006).
[10] J. Lee, H. Kim, T. Park, Y. Ko, J. Ryu, H. Jeon, J. Park, and H. Jeon, “Charge trapping characteristics of Au nanocrystals embedded in remote plasma atomic layer-deposited Al2O3 film as the tunnel and blocking oxides for nonvolatile memory application”, J. Vac. Sci. Technol. A 30, 01A104 (2012)
[11] V. Mikhelashvili, Y. Shneider, B. Meyler, G. Atiya, S. Yofis, T. Cohen-Hyams, W. D. Kaplan, M. Lisiansky, Y. Roizin, J. Salzman, and G. Eisenstein , “Non-volatile memory transistor based on Pt nanocrystals with negative differencial resistance,” J. Appl. Phys. 112, 024319 (2012)
[12] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, Emmanuel F. Crabbe, and K. Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett., 68, 1377 (1996)
[13] 游易青, high-k材料應用於閘極氧化層對奈米晶記憶體電性之影響, 國立清華大學材料科學與工程研究所, 2005.
[14] J. J. Lee, X. Wang, W. Bai, N. Lu, and D. L. Kwong “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectrics,” IEEE transactions on electron devices, 50, 10, (2003)
[15] T. Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias, “Multilevel charge storage in silicon nanocrystal multilayers,” Appl. Phys. Lett., 87, 202109, (2005)
[16] T. Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias, “Si nanocrystal based memories: Effect of the nanocrystal density,” J. Appl. Lett., 100, 014310 (2006)
[17] K. Y. Lim, M. C. Kim, S. H. Hong, S. H. Choi1, and K. J. Kim, “Nonvolatile memory by using charge traps in silicon-rich oxides,” J. Appl. Phys., 108, 003707 (2010)
[18] H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “end-Hall ion source”, J. Vacuum Science and Technology, A5, 2081-2084 (1987).
[19] H. R. Kaufman and R. S. Robinson, “Operation of broad-beam sources”, Commonwealth Scientific Corporation, Alexandria, p. 57 (1987)
[20] 吳誌澄, 尖晶石薄膜磊晶於氮化鎵基板之研究, 國立成功大學電機所, 2011.
[21] M. Shalchain, J. Grisolia, G. Ben Assayag, H. Coffin, S. M. Atarodi, A. Claverie, “From continuous to quantized charging response of silicon nanocrystals obtained by ultra-low energy ion implantation,” Solid-State Electronics, 49, 1198-1205 (2005)
[22] J. Grisolia, M. Shalchain, G. Ben Assayag, H. Coffin, S. M. Atarodi, A. Claverie, “The effect of oxidation conditions on structural and electrical properties of silicon nanoparticles obtained by ultra-low-energy ion implantation,” Nanotechnology, 16, 2987-2992 (2005)
[23] M. Shalchain, J. Grisolia, G. Ben Assayag, H. Coffin, S. M. Atarodi, A. Claverie, “ Room-temperature quantum effect in silicon nanoparticles obtained ny low-energy ion implantation and embedded in a nanometer scale capacitor,” Appl. Phys. Lett., 86, 163111 (2005)
[24] 蘇冠瑋, 低能離子束輔助濺鍍奈米矽晶氧化矽薄膜之研究, 國立成功大學, 2012
[25] M. Zaxharias, J. Blasing, P. Veit, L. Tsybeskov, K. Hirschman, and P. M. Fauchet, “Thermal crystallization of amorphous Si/SiO2 superlattices,” Appl. Phys. Lett., 74, 2614-2616 (1999)
[26] Z. T. Kang, B. Arnold, C. J. Summers, and B. K. Wagner, “Synthesis of silicon quantum dot buried SiOx films with controlled luminescent properties for solid-state lighting,” Nanotechnology, 17, 4477-4482 (2006).
[27] B. H. Kim, C. H. Cho, T. W. Kim, N. M. Park, G. Y. Sung, and S. J. Park, “Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4,” Appl. Phys. Lett., 86, 091908-3 (2005).
[28] G. R. Lin, C. J. Lin, C. K. Lin, L. J. Chou, and Y. L. Chueh, “Oxygen defect and Si nanocrystal dependent white-light and near-infrared electroluminescence of Si-implanted and plasma-enhanced chemical-vapor deposition-grown Si-rich SiO2,” Appl. Phys. Lett., 97, 094306 (2005)
[29] A. Barranco, F. Yubero, J. P. Espinos, P. Groening, A. R. Gonzalez-Elipe, “Electromic state characterization of SiOX thin films prepared by evaporation,” J. Appl. Phys. 97, 113714 (2005)
[30] J. H. Kim, J. Y. Yang, J. S. Lee, and J. P. Hong, ”Memory characteristics of cobalt-silicide nanocrystals embedded in HfO2 gate oxide for nonvolatile nanocrystal flash devices,” Appl. Phys. Lett., 92, 013512 (2008)
[31] B. Y. Park, S. Lee, K. Park, C. H. Bae, and S. M. Park, “Enhancement of light emission from silicon nanocrystals by post-O2-annealing process”, J. Appl. Phys., 107, 014314-2 (2010).
[32] S. S. Zumdahl, Chemistry, 4th ed. (Houghton Mifflin, Boston), chap. 8.
[33] C. H. Cho, B. H. Kim, T. W. Kim, and S. J. Park, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride films,” Appl. Phys. Lett., 86, 143107 (2005)
[34] J. W. McPherson, Reliability Physics and Engineering: Time-To-Failure Modeling, p.184