簡易檢索 / 詳目顯示

研究生: 曾懷寬
Zeng, Huai Kuan
論文名稱: 獨立雙閘極鰭式電晶體快閃記憶體之TCAD模擬
Modeling and simulation of independent double gate FinFET flash memory
指導教授: 盧達生
Lu, Darsen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 50
中文關鍵詞: 雙閘極快閃記憶體氧化物-氮化物-氧化物(ONO)
外文關鍵詞: Double Gate, Flash Memory, Oxide - Nitride - Oxide (ONO)
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技技術不斷進步,人們對於電子產品的要求逐漸提升,因此半導體產業也不斷地在蓬勃發展,而為了滿足電子產品對記憶體的需求,如使其縮小化、低功率消耗、增大記憶體容量及提高讀取速度……等等,尤其是現代AI是代的來臨,因此發展更高能性的記憶體,對於現在的科技產業業就顯得相當重要。然而因遵循著Moore’s Law的規範,隨著技術節點不斷降低,在元件物理特性及製程上面臨極限的問題。
    本篇論文主要是透過利用Sentaurus TCAD軟體建構並分析在獨立雙閘極FinFET快閃記憶體的元件特性。眾所周知,利用3DFinFET通道器件可提供出色的短通道效應(SCE)抵抗度。因此,開發具有氧化物 - 氮化物 - 氧化物(ONO)電荷俘獲層的3D通道FinFET閃存記憶體。而獨立雙閘極FinFET閃存記憶體比起傳統的SONOS閃存記憶體,又具有以下的優點:可藉由兩條wordline控制兩個電荷俘獲層,使其達到能儲存2個bit。

    Memory requirements for electronic products include narrow size, low power consumption, high memory capacity, and high read speed. The development of high-performance memory is very important for the technology industry.
    This dissertation focuses on the construction and analysis of the component characteristics of independent double-gate FinFET flash memory using Sentaurus TCAD software. Using three-dimensional (3D) FinFET channel devices can provide a excellent short channel effect. Thus, scaled 3D channel FinFET flash memory with oxide-nitride-oxide charge trapping layers have been actively developed. Independent double-gate FinFET flash memory has the following advantage over conventional silicon–oxide–nitride–oxide–silicon flash memory: two charge-trapping layers can be controlled by two word lines so that two bits can be stored.

    CONTENTS 中文摘要 i Abstract ii Acknowledgement iii LIST OF FIGURES vi LIST OF TABLES ix Chapter 1. Introduction 1 1.1 Foreword 1 1.2 Applications and problems of flash memory 1 1.3 Research purpose and motivation 2 Chapter 2. Introduction and mechanism 4 2.1 Introduction to memory 4 2.1.1 Floating gate structure 7 2.1.2 SONOS structure: 8 2.2 Physical mechanism of memory 11 2.2.1 Hot election injection 11 2.2.2 Tunneling 12 Chapter 3. Simulation and analysis 14 3.1 Experiment introduction 14 3.2 Physical mechanism model 16 3.2.1 Shockley-Read-Hall model 16 3.2.2 Non-local tunneling model 17 3.2.3 Threshold voltage extraction model 19 3.3 Single-gate FinFET model 20 3.3.1 Simulation component structure and parameters 20 3.3.2 Simulation results 22 3.4 Independent double-gate model 25 3.4.1 Simulation component structure and parameters 25 3.4.2 Simulation results 26 3.5 Oral committee question 33 Chapter 4. Conclusions and future development 37 Appendix 38 Reference 48 LIST OF FIGURES Figure 1.1 Schematic diagram of 3D NAND array. 2 Figure 2.1 (a) NOR connection 6 Figure 2.1 (b) NAND connection 6 Figure 2.2(a) Floating gate structure. 9 Figure 2.2(b) SONOS structure. 10 Figure 2.3 Band diagram of floating-gate flash memory during charge saving 10 Figure 2.4 Band diagram of SONOS flash memory during charge saving 11 Figure 2.5 In MOS, hot carriers are injected into oxide layer 12 Figure 2.6(a) Direct tunneling energy band diagram 13 Figure 2.6(b) Fowler-Nordheim tunneling energy band diagram 13 Figure 3.1 Normal FinFET Flash memory transistor layout diagram. 14 Figure 3.2 Independent double-gate FinFET flash memory transistor layout diagram. 15 Figure 3.3 Four processes of electron-hole recombination 17 Figure 3.4 eBarrier tunneling and hBarrier tunneling.[14] 18 Figure 3.5 Non-local parameter settings. 19 Figure 3.6 Threshold voltage extraction parameter settings. 20 Figure 3.7 Single-gate FinFET flash memory. 21 Figure 3.8 Number of electrons in storage layer after writing. 23 Figure 3.9 Threshold voltage vs. program time. 24 Figure 3.10 Threshold voltage vs. erasing time. 24 Figure 3.11 I-V curves from TCAD simulation write and erase. 25 Figure 3.12 Independent double-gate FinFET flash memory 26 Figure 3.13 Program time vs. back gate Vt. 29 Figure 3.14 Program voltage vs. back gate Vt of front gate and back gate. 29 Figure 3.15 Program voltage vs. ∆Vt of front gate and back gate. 30 Figure 3.16 Program voltage vs. storage eDensity of front gate and back gate. 30 Figure 3.17 Depletion for doping concentration of 2 x 1018. 31 Figure 3.18 Depletion for doping concentration of 1 x 1019 31 Figure 3.19 Program voltage vs. Vt of front gate and back gate for doping concentration of 1 x 1019. 32 Figure 3.20 Program voltage vs. ∆Vt of front gate and back gate for doping concentration of 1 x 1019. 32 Figure 3.21 Depletion for N doping 33 Figure 3.22 Depletion for doping concentration of 4 x 1018. 34 Figure 3.23 Depletion for doping concentration of 6 x 1018. 35 Figure 3.24 Depletion for doping concentration of 8 x 1018. 35 Figure 3.25 Depletion for doping concentration of 2 x 1019. 36 LIST OF TABLES Table 2.1 Comparison between NOR and NAND flash memory. 7 Table 3.1 parameters for FinFET flash memory model. 21

    [1] Hwang, J.-R., et al. 20nm gate bulk-FinFET SONOS flash. Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, IEEE.
    [2] Liu, Y., et al. Experimental study of tri-gate SOI-FinFET flash memory. SOI Conference (SOI), 2012 IEEE International, IEEE.
    [3] Park, Ki-Tae, et al. "Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming." IEEE Journal of Solid-State Circuits50.1 (2015): 204-213.
    [4]成大資工Wiki ”flash”
    http://wiki.csie.ncku.edu.tw/embedded/Flash#nornand-flash%E4%BB%8B%E7%B4%B9 ,(2018/06/12)
    [5] Sharma, Susheel, S. S. Rajput, and S. S. Jamuar. "Floating-gate MOS structures and applications." IETE Technical Review 25.6 (2008): 338-345.
    [6]” Floating Gates and Electron Tunnels: Flash Retains Data”, http://dataonfire.com/blog/2015/02/floating-gates-and-electron-tunnels-flash-retains-data/ , (2018/06/01)
    [7] Min She, ”Semiconductor Flash Memory Scaling” (2003)
    [8] Shiyanovskii, Yuriy, et al. "Hardware Trojan by hot carrier injection." arXiv preprint arXiv:0906.3832 (2009).

    [9] Roy, Kaushik, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits." Proceedings of the IEEE 91.2 (2003): 305-327.
    [10] Jitu J. Makwana, Dr. Dieter K. Schroder "A Nonvolatile Memory Overview"
    http://aplawrence.com/Makwana/nonvolmem.html , (2018/06/01)
    [11] Tsung-Han Lu, "Reliability of Devices in NAND Flash Memory Periphery Circuitry"國立成功大學碩士論文,2013
    [12] Lai, Stefan. "Tunnel oxide and ETOX/sup TM/flash scaling limitation." Nonvolatile Memory Technology Conference, 1998. 1998 Proceedings. Seventh Biennial IEEE. IEEE, 1998.
    [13] Biswas, Arnab, et al. "TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model." Microelectronic Engineering 98 (2012): 334-337.
    [14] "Sentaurus™ Device User Guide" Version L-2016.03, March 2016, Synopsys, Inc.
    [15] Darsen D. Lu, "Stressor Design for FinFETs with Air-Gap Spacers." Electrical Engineering, IEEE.

    [16]Ying–Tsai Ting, "Study on Operation and Structure of SONOS Type Flash Device"國立清華大學碩士論文,2009
    [17] Sung, Suk-Kang, et al. "Fully integrated SONOS flash memory cell array with BT (body tied)-FinFET structure." IEEE transactions on nanotechnology 5.3 (2006): 174-179.
    [18] Goudon, Thierry, Vera Miljanović, and Christian Schmeiser. "On the Shockley–Read–Hall model: generation-recombination in semiconductors." SIAM Journal on Applied Mathematics 67.4 (2007): 1183-1201.

    無法下載圖示 校內:2023-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE