簡易檢索 / 詳目顯示

研究生: 劉紋伶
Liu, Wen-Ling
論文名稱: 應用時間序列分析探討七家灣溪雨量、水位及濁度之關聯性
Time Series Analysis on Relationship among rainfall, water level and turbidity of Chijiawan Creek
指導教授: 王筱雯
Wang, Hsiao-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系碩士在職專班
Department of Hydraulic & Ocean Engineering (on the job class)
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 時間序列分析稽延時間遲滯圖型七家灣
外文關鍵詞: Time Series Analysis, Lag Time, Hysteresis Patterns, Chijiawan Creek
相關次數: 點閱:102下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在蒐集並彙整於七家灣溪所監測之序列資料,利用時間序列分析法探討該河川的水砂特性,經由台電水文站、氣象局與自動監測儀器的測量取得雨量、水位與濁度資料,運用二元交叉相關函數與濁度-水位圖型態,探討不同水文事件之水砂因子隨著時間與空間的變化所表現出來的特性,進而了解不同因子之間相互影響的關係及其稽延時間;另亦會探討壩體改善後0~4個月、4個月~1年及6~9年這三個期間,改善工程分別對河川所產生的影響性。
    關於雨量與水位之二元交叉相關性,結果顯示水位歷線屬單峰型的水文事件之相關性最高,其次為雙峰型態,最低則為多峰型態之水文事件。為此本研究深入分析,將多峰型態之水文事件切割出多個單峰型態之水文事件,其最大相關係數皆有提高,相關性有明顯提升的趨勢。另雨量與水位之最大交叉相關係數所對應的滯期為2~7小時,表示該小時雨量與2~7小時後的水位之相關性最高。
    七家灣溪一號壩體改善拆除完成後,上游觀魚台與下游萬壽橋受各水文事件影響所產生的尖峰濁度差距結果為拆壩後0~4個月及4個月至1年期間之觀魚台濁度,受水文事件(編號1~4事件)影響所造成之尖峰濁度皆小於200 NTU;下游萬壽橋濁度於拆壩後0~4個月期間,受水文事件(編號1~2事件)影響所造成之尖峰濁度值為538 NTU及245 NTU,而拆壩後4個月至1年期間,受水文事件(編號3~4事件)影響所造成之尖峰濁度值則已大於1,000 NTU,可能原因為拆壩後,壩體上游庫區之細顆粒泥砂,於4個月至1年期間已影響至萬壽橋,導致萬壽橋濁度容易受水文事件影響而升高,而拆壩後6~9年期間水文事件(編號5~18事件)之水文事件尖峰濁度值亦皆大於或接近1,000 NTU,甚至高達9,000 NTU。
    關於判定18場水文事件萬壽橋濁度─水位圖之遲滯圖型,結果為12場水文事件呈現順時針圈,且遲滯延時為-1~0小時,表示濁度峰值比水位峰值提早0~1小時先發生,可能原因為泥砂產生的區域在河道附近,或上游支流或源頭所供應泥砂的流動路徑很短,所以泥砂供應量充足;惟有6場水文事件呈現逆時針圈,其中2場水文事件(編號1、2事件)發生時間分別於拆壩後1個月及4個月,表示拆壩後0~4個月期間,壩體上游的細顆粒泥砂尚未影響至萬壽橋,使得萬壽橋測站之泥砂供應量尚且不足,故呈現逆時針迴圈,而另4場逆時針迴圈之水文事件(編號7、9、12、13),可能原因為事件初期降雨規模強度不大,導致初期泥砂供應量不足,上游支流供應泥砂的時機較晚。最後發現「強降雨」或「長延時降雨」才會供應充足的泥砂,平均降雨強度需高於4.5 mm/hr且最大降雨強度大於20 mm/hr的條件下,泥砂初期較容易發生侵蝕,上游的泥砂供應量才會充足。

    This study employs time series analysis to understand water and sediment dynamics in Chijiawan Creek. Rainfall, water level, and turbidity data are examined using binary cross-correlation functions and turbidity-water level patterns. Dam improvement effects are assessed in three phases: 0-4 months, 4 months to 1 year, and 6-9 years post-improvement.
    Binary cross-correlation reveals peak correlation in single-peaked events, followed by double-peaked, and lowest in multi-peaked cases. Breaking multi-peaked events enhances correlation with a 2-7-hour lag time.
    After dam demolition, peak turbidity shifts are examined at Guanyuta and Wanshou Bridge. Guanyuta maintains peaks below 200 NTU during 0-4 months and 4 months to 1 year. Wanshou Bridge, 0-4 months after demolition, sees events 1-2 peak at 538 NTU and 245 NTU. During 4 months to 1 year, events 3-4 exceed 1,000 NTU due to upstream sediment's impact, intensifying turbidity sensitivity.
    Analyzing turbidity-water level hysteresis, 12 of 18 hydrological events display clockwise loops with a -1 to 0 hour lag, indicating turbidity peaks precede water level by 0-1 hour. Six events exhibit counterclockwise loops at 1 and 4 months post-demolition. In the initial 0-4 months, limited upstream sediment leads to insufficient supply and counterclockwise loops. Four other counterclockwise loops result from delayed sediment supply due to initial rainfall intensity. Adequate supply requires "intense" or "prolonged" rainfall, with average intensity >4.5 mm/hr and max intensity >20 mm/hr for upstream sediment transport.

    中文摘要 I 英文摘要 III 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3論文架構 3 第二章 文獻回顧 5 2-1 降雨類型 5 2-2 時間序列 6 2-2-1 時間序列特性 6 2-2-2時間序列的組成 7 2-2-3 時間序列之組成模式 8 2-3 相關函數分析關聯性 8 2-4 泥砂濃度─流量圖之型態判定 10 第三章 研究方法 18 3-1 研究區域概述 18 3-1-1地理位置 18 3-1-2七家灣溪一號壩體拆除改善背景資料 19 3-1-3地文資料 20 3-1-4氣候資料 21 3-2 資料蒐集與整理 23 3-2-1水文測站 23 3-2-2水位資料 26 3-2-3濁度資料 27 3-3 分析方法 29 3-3-1 自相關函數 29 3-3-2 二元交叉相關函數 31 3-3-3 集流時間 33 第四章 結果與討論 35 4-1水文事件之雨量、水位及濁度 35 4-2雨量與水位之關聯性 38 4-3水位與濁度之關聯性 42 4-3-1交叉相關性分析 42 4-3-2濁度─水位圖 47 4-4壩體改善對環境所引起之影響性 51 4-4-1壩體改善對濁度之影響 51 4-4-2壩體改善對濁度-水位圖遲滯圖型之影響 52 4-5水文事件型態對遲滯圖型之影響 54 第五章 結論與建議 56 5-1 結論 56 5-2 建議 57 參考文獻 58 附錄一、18場水文事件之雨量、水位及濁度歷線圖及遲滯圖型 68

    1. Aich, V., Zimmermann, A. & Elsenbeer, H. (2014) “Quantification and interpretation of suspended-sediment discharge hysteresis patterns: how much data do we need? ” Catena 122, 120–129. 10.1016/j.catena.2014.06.020
    2. Asselman, N. E. M. (1999) “Suspended sediment dynamics in a large drainage basin: the River Rhine.” Hydrological Processes 13, 1437–1450.
    3. Bača, P. (2008) “Hysteresis effect in suspended sediment concentration in the Rybárik basin, Slovakia.” Hydrological Sciences Journal 53 (1), 224–235. 10.1623/hysj.53.1.224.
    4. Brasington, J. & Richards, K. (2000) “Turbidity and suspended sediment dynamics in small catchments in the Nepal Middle Hills.” Hydrological Processes 14, 2559–2574. 10.1002 /1099-1085 (20001015) 14:14 < 2559 :: AID-HYP114 >3.0.CO;2-E.
    5. Bull, L. J., Lawler, D. M., Leeks, G. J. L. & Marks, S. (1995) “Downstream changes in suspended sediment fluxes in the River Severn, UK.” In: Effects of Scale on Interpretation and Management of Sediment and Water Quality, Proceedings of the Boulder Symposium, July 1995. International Association of Hydrological Sciences Publication, Vol. 226, pp. 27–37.
    6. Costa, J. E. (1977) “Sediment concentration and duration in stream channels.” Journal of Soil and Water Conservation 32 (4), 168–170.
    7. de Boer, D. H. & Campbell, I. A. (1989) “Spatial scale dependence of sediment dynamics in a semi-arid badland drainage basin.” Catena 16, 277–290.
    8. Duvert, C., Gratiot, N., Evrard, O., Navratil, O., Némery, J., Prat, C. & Esteves, M. (2010) “Drivers of erosion and suspended sediment transport in three headwater catchments.” Geomorphology 123, 243–256. 10.1016/ j.geomorph. 2010.07.016.
    9. Eder, A., Strauss, P., Krueger, T. & Quinton, J. N. (2010) “Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment, Austria.” Journal of Hydrology 389, 168–176. 10.1016/j. jhydrol.2010.05.043.
    10. Fang, H. Y., Cai, Q. G., Chen, H. & Li, Q. Y. (2008) “Temporal changes in suspended sediment transport in a gullied loess basin: the lower Chabagou Creek on the Loess Plateau in China.” Earth Surface Processes and Landforms 33, 1977–1992. 10.1002/esp.1649.
    11. Gao, P. & Josefson, M. (2012) “Event-based suspended sediment dynamics in a central New York watershed.” Geomorphology 139–140, 425–437. 10.1016/ j.geomorph. 2011.11.007.
    12. Gharari, S. H. & Razavi, S. (2018) “Hysteresis in hydrology and hydrological modeling: memory, path-dependency, or missing physics?” Journal of Hydrology 556, 500–519. 10. 1016/j.jhydrol.2018.06.037.
    13. Gonzales-Inca, C., Valkama, P., Lill, J. O., Slotte, J., Heiteharju, E. & Uusitalo, R. (2018) “Spatial modeling of sediment transfer and identification of sediment sources during snowmelt in an agricultural watershed in boreal climate.” Science of the Total Environment 612, 303–312. 10.1016/j.scitotenv. 2017.08.142.
    14. Goodwin, T. H., Young, A. R., Holmes, G. R., Old, G. H., Hewitt, N., Leeks, G. J. L., Packman, J. C. & Smith, B. P. G. (2003) “The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire.” The Science of the Total Environment 3114–3116, 475–494. 10.1016/S0048-9697(03)00069-X.
    15. Harmel, R. D. & Smith, P. (1956) “Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling.” Journal of Hydrology 337, 326–336. 10.1016/j.jhydrol.2007.01.043.
    16. Hudson, P. F. (2003) “Event sequence and sediment exhaustion in the lower Panuco Basin, México.” Catena 52, 57–76. 10.1016/ S0341-8162(02)00145-5. .
    17. Hughes, A. O., Quinn, J. M. & McKergow, L. A. (2012) “Land use influences on suspended sediment yields and event sediment dynamics within two headwater catchments, Waikato, New Zealand.” New Zealand Journal of Marine and Freshwater Research 46 (3), 315–333. 10.1080/00288330.2012. 661745.
    18. Jansson, M. B. (2002) “Determining sediment source areas in a tropical river basin, Costa Rica.” Catena 47, 63–84. 10.1016/ S0341-8162(01)00173-4.
    19. Karl Pearson (1895) “Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material”
    20. Kattan, Z., Ga, J. Y. & Probst, J. L. (1987) “Suspended sediment load and mechanical erosion in the Senegal basin – estimation of the surface runoff concentration and relative contributions of channel and slope erosion.” Journal of Hydrology 92, 59–76. 10.1016/0022-1694(87)90089-8.
    21. Kirpich, Z. P. (1940). “Time of concentration of small agricultural watersheds,” Civil Engineering 10(6), 362.
    22. Klein, M. (1984) “Anti clockwise hysteresis in suspended sediment concentration during individual storms.” Catena 11, 251–257. 10.1016/ 0341-8162 (84) 90014-6.
    23. Kostaschuk, R. A., Luternauer, J. L. & Church, M. A. (1989) “Suspended sediment hysteresis in a salt-wedge estuary: Fraser River, Canada.” Marine Geology 87, 273–285.
    24. Kronvang, B., Laubel, A. & Grant, R. (1997) “Suspended sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbák stream, Denmark.” Hydrological Processes 11, 627–642. 10.1002/ (SICI) 1099-1085 (199705)11:6 <627::AID-HYP481>3.0.CO;2-E.
    25. Larocque, M., A. Mangin, M. Razack, O. Banton (1998) “Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France)” Journal of Hydrology. 205: 217-231
    26. Lee, J.Y. and K.K. Lee. (2000) “Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system.” Journal of Hydrology. 229: 190-201.
    27. Lenzi, M. A. & Marchi, L. (2000) “Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy).” Catena 39, 267–282. 10.1016/S0341-8162(00)00079-5.
    28. Leopold, L. B. & Maddock, T. (1953) “The hydraulic geometry of stream channels and some physiographic implications.” Geological Survey Professional Paper 252. 10. 3133 /pp252.
    29. Loughran, R. J., Campbell, B. L. & Elliott, G. L. (1986) “Sediment dynamics in a partially cultivated catchment in New South Wales, Australia.” Journal of Hydrology 83, 285–297.
    30. Marcus, A. W. (1989) “Lag-time routing of suspended sediment concentrations during unsteady flow.” Geological Society of America Bulletin 101, 644–651.
    31. Marttila, H. & Kløve, B. (2010) “Dynamics of erosion and suspended sediment transport from drained peatland forestry.” Journal of Hydrology 388, 414–425. 10.1016/j.jhydrol.2010.05.026.
    32. Malutta S, Kobiyama M, Chaffe PLB, Bonumá NB. (2020) “Hysteresis analysis to quantify and qualify the sediment dynamics: state of the art. ” Water Sci Technol. Jun;81(12):2471-2487.
    33. Michael Bliss Singer and Thomas Dunne (2001) “Identifying eroding and depositional reaches of valley by analysis of suspended sediment Transport in the Sacramento River, California” Water Resources Reseach. Vol.37, NO.12: 3371-3381
    34. Mossa, J. (1989) “Hysteresis and nonlinearity of discharge-sediment relationships in the Atchafalaya and lower Mississippi rivers.” In: Sediment and the Environment, Proceedings of the Baltimore Symposium. Vol. 184, IAHS Publications, Australia.
    35. Mukundan, R., Pierson, D. C., Schneiderman, E. M., ODonnell, D. M. & Pradhnang, S. M. (2013) “Factors affecting storm event turbidity in a New York City water supply stream.” Catena 207, 80–88. 10.1016/j.catena. 2013.02.002.
    36. Nadal-Romero, E., Regüés, D. & Latron, J. (2008) “Relationships among rainfall, runoff, and suspended sediment.” Catena 74, 127–136. 0.1016/j. catena. 2008.03.014.
    37. Oeurng, C., Sauvage, S. & Sánchez-Pérez, J.-M. (2010) “Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France.” Earth Surface Processes and Landforms 35, 1289–1301. 10.1002/esp.1971.
    38. Old, G. H., Leeks, G. J. L., Packman, J. C., Smith, B. P. G., Lewis, S., Hewitt, E. J., Holmes, M. & Young, A. (2003) “The impact of a convectional summer rainfall event on river flow and fine sediment transport in a highly urbanised catchment: Bradford, West Yorkshire.” Science of the Total Environment 314–316, 495–512. .
    39. Padilla, A. and Antonio Pulido-Bosch. (1995) “Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis.” Journal of Hydrology.168: 73-89.
    40. Peart, M. R., Ruse, M. E. & Fok, L. (2005) “Sediment delivery from a landslide to stream in drainage basin in Hong Kong.” In: Geomorphological Processes and Human Impacts in River Basins (Proceedings of the International Conference Held at Solsona, Catalonia, Spain). Vol. 299, IAHS Publications.
    41. Picouet, C., Hingray, B. & Olivry, J. C. (2001) “Empirical and conceptual modelling of the suspended sediment dynamics in a large tropical African river: the Upper Niger River basin.” Journal of Hydrology 250, 19–39. 10.1016/S0022-1694(01) 00407-3.
    42. Pietron, J., Jarjo, J., Romanchenko, A. & Chalov, S. R. (2015) “Model analyses of the contribution of in-channel processes to sediment concentration hysteresis loops.” Journal of Hydrology 527, 576–589. 10.1016/j.jhydrol.2015.05.009.
    43. Rinaldi, M., Casagli, N., Dapporto, S. & Gargini, A. (2004) “Monitoring and modeling of pore water pressure changes and riverbank stability during flow events.” Earth Surface Processes and Landforms 29 (2), 237–254. 10.1002/esp.1042.
    44. Rovira, A. & Batalla, R. J. (2006) “Temporal distribution of suspended sediment transport in a Mediterranean basin: the Lower Tordera (NE SPAIN).” Geomorphology 79, 58–71. 10. 1016/ j.geomorph.2005.09.016.
    45. Salant, N. L., Hassan, M. A. & Alonso, C. V. (2008) “Suspended sediment dynamics at high and low storm flows in two small watersheds.” Hydrological Processes 22, 1573–1587. 10.1002/hyp.6743.
    46. Sarma, J. N. (1986) “Sediment transport in the Burhi Dihing River, India.” In: Drainage Basin Sediment Delivery (R. F. Hadley, ed.). IAHS Publications 159, pp. 199–215.
    47. Seeger, M., Errea, M. P., Beguería, S., Arnáez, J., Martí, C. & García-Ruiz, J. M. (2004) “Catchment soil moisture and rainfall characteristics as determinant factors for discharge/ suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees.” Journal of Hydrology 288, 299–311. 10.1016/j.jhydrol.2003.10.012.
    48. Sidle, R. C. & Campbell, A. J. (1985) “Patterns of suspended-sediment transport in a coastal Alaska stream.” Journal of the American Water Resources Association 21, 909–917. 10.1111/ j.1752-1688.1985.tb00186.x.
    49. Smith, H. G. & Dragovich, D. (2009) “Interpreting sediment delivery processes using suspended sediment-discharge hysteresis patterns from nested upland catchments, south-eastern Australia.” Hydrological Processes 23 (17), 2415–2426. 10.1002/hyp.7357.
    50. Tananaev, N. (2013) “Hysteresis effects of suspended sediment transport in relation to geomorphic conditions and dominant sediment sources in medium and large rivers of Russian Arctic.” Hydrology Research 46 (6), 232–243. 10.2166/nh. 2013.199.
    51. Walling, D. E. (1974) “Suspended sediment and solute yields from a small catchment prior to urbanization.” In: Fluvial Processes in Instrumented Watersheds (K. J. Gregory & D. E. Walling, eds). Institute of British Geographers Special Publication 6, IBG, London, UK, pp. 169–192.
    52. Walling, D. E. & Teed, A. (1971) “A simple pumping sampler for research into suspended sediment transport in small catchments.” Journal of Hydrology 13, 325–337. 10.1016/ 0022-1694(71)90251-4.
    53. Walling, D. E. & Webb, B. W. (1982) “Sediment availability and the prediction of stormperiod sediment yields.” International Association of Hydrological Sciences Publication 137, 327–337.
    54. Wang, Y., Ren, M. & Syvitski, J. P. M. (1998) “Sediment transport and terrigenous flux.” In: The Sea. Volume 10, The Global Coastal Ocean (K. H. Brink & A. R. Robinson, eds). Wiley, New York, USA, pp. 253–292.
    55. Williams, G. P. (1989) “Sediment concentration versus water discharge during single hydrologic events in rivers.” Journal of Hydrology 111, 89–106. 10.1016/0022-1694(89)90254-0.
    56. Wood, P. A. (1977) “Controls of variation in suspended sediment concentration in the River Rother, West Sussex, England.” Sedimentology 24, 437–445. doi.org/10.1111/j.1365-3091. 1977.tb00131.x.
    57. Yang, C. & Lee, K. Y. (2018) “Analysis of flow-sediment rating curve hysteresis based on flow and sediment travel time estimations.” International Journal of Sediment Research 33, 171–182. 10.1016/j.ijsrc.2017.10.003.
    58. Yeshaneh, E., Eder, A. & Blöschl, G. (2014) “Temporal variation of suspended sediment transport in the Koga catchment, North Western Ethiopia and environmental implications.” Hydrological Processes 28, 5972–5984. 10.1002/hyp.
    59. 王如意,易任(1992),「應用水文學(上)(下)」,國立編譯館,茂昌圖書有限公司。
    60. 王筱雯(2010) ,七家灣溪一號壩壩體及棲地改善工程-泥砂衝擊物理模型及數值分析,內政部營建署雪霸國家公園管理處。
    61. 王筱雯(2011),武陵地區溪流生態系長期監測暨整合研究-七家灣溪一號壩壩體改善工程之水文與泥砂監測,內政部營建署雪霸國家公園管理處。
    62. 王筱雯(2012),七家溪一號壩壩體改善後河道環境衝擊評估,內政部營建署雪霸國家公園管理處。
    63. 王筱雯(2013),武陵地區溪流生態系及七家灣溪一號防砂壩壩體改善後研究-物理棲地與水文泥砂研究,內政部營建署雪霸國家公園管理處。
    64. 王筱雯(2014),七家灣溪水文影像監測,內政部營建署雪霸國家公園管理處。
    65. 王筱雯(2015),七家灣溪水文影像監測,內政部營建署雪霸國家公園管理處。
    66. 王筱雯(2016),七家灣溪水文泥砂監測,內政部營建署雪霸國家公園管理處。
    67. 王筱雯(2017),七家灣溪水文泥砂監測,內政部營建署雪霸國家公園管理處。
    68. 王筱雯(2018),七家灣溪水文泥砂監測,內政部營建署雪霸國家公園管理處。
    69. 王筱雯(2019),七家灣溪水文泥砂監測,內政部營建署雪霸國家公園管理處。
    70. 石棟鑫(2001),「臺灣地區颱風雨降雨型態之分析研究」,國立中央大學土木工程研究所碩士學位論文。
    71. 石村貞夫(2005),時間數列分析的SPSS 使用手冊,鼎茂圖書出版股份有限公司。
    72. 林茂文(1992),「時間數列分析與預測」,華泰書局。
    73. 林惠玲、陳正倉(1996),「統計學-分法與應用(上)(下)」,雙葉書廊有限公司。
    74. 林詩雅(2012),石門水庫集區強降雨與水體濁度之關聯性研究,國立中央大學應用地質研究所碩士學位論文。
    75. 吳雪蘋(2000),濁水溪沖積扇地區地下水位變化之硏究,國立臺灣大學地質科學研究所碩士學位論文。
    76. 林芳華、馮正一、張育瑄(2010),「濁水溪沖積扇頂區之地下水文特性分析案例」, J. Agri. & Fore. 59(4): 369-381。
    77. 洪豪男(2003),台東卑南溪流域降雨及地下水位之時間序列變化特性,國立中興大學水土保持學系碩士學位論文。
    78. 陳昶憲、康村啟、林榮坤(1994),「八掌溪流域洪流量預測」,83年度農業工程研討會,pp.429-441。
    79. 許峪萇(2002),台灣中部七家灣溪集水區流量序列特性之研究,國立中興大學水土保持學系碩士學位論文。
    80. 陳宗顯(2006),降雨引致地下水位變化之研究- 以那菝、六甲與東和地下水位站為例,國立成功大學水利與海洋工程研究所博士學位論文。
    81. 張家豪(2012),七家灣溪壩體移除對河相變遷之影響,國立成功大學水利與海洋工程研究所碩士學位論文。
    82. 游保杉、曾財益、楊道昌、蔡長泰(1994),「八掌溪即時河川流量預報模式之初步研究」,台灣水利42(3):64-78。
    83. 經濟部水利署(2000),「臺灣與其他國家降雨量的比較」,水利統計簡訊 STA.18。
    84. 楊文川(2002),應用時間序列分析探討濁水溪沖積扇扇頂區降雨量及地下水位之趨勢與變動,國立中興大學水土保持學系碩士學位論文。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE