簡易檢索 / 詳目顯示

研究生: 周潤祥
Zhou, Run-Xiang
論文名稱: 低純度鋁製作多孔性氧化鋁薄膜應用於鎳鈷電化學沉積之研究
Fabrication of Porous Anodic Alumina (PAA) Films from Commercial Purity (99%) Al Foils and Its Application to Ni-Co Electrodeposition
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 103
中文關鍵詞: 異常共鍍脈衝波電壓/電流陽極氧化處理奈米線多孔性氧化鋁薄膜電化學沉積
外文關鍵詞: porous anodic alumina (PAA), Anodization, pulse voltage/current, electrodeposition, nanowires, anomalous-codeposition
相關次數: 點閱:145下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文基本上分為兩大部分,包括:製作多孔性氧化鋁薄膜當作模板以及鎳鈷合金電化學沉積。
    此研究以混合脈衝波電壓技術在室溫及靜止電解液環境之下,利用二次陽極處理以低純度(99%)鋁箔在0.05 M草酸電解液裡製作規則性與高密度多孔性氧化鋁薄膜。根據實驗結果,最佳參數為利用pulse reverse在第一階段陽極處理作為預成孔圖案。在第二階段以pulse所做出來的奈米孔洞陣列之直徑範圍為30-60 nm。製程中的控制參數,陽極氧化時間及電壓波形皆直接影響到奈米孔洞之結構與形貌,除此之外鋁的純度也是最主要的考量。
    另一方面,透過自組化模板之介電崩潰,利用定電流方形脈衝波在較高溫環境之下(55℃),增加金屬離子在鍍浴裡之游動率,可製作出鎳鈷合金奈米線。
    使用不同電流波形對電鑄的鎳鈷金屬進行表面處理,不管何種波形的脈衝波,只要波形中含有緩衝時間 (relaxation time),鍍層的表面粗糙度皆較為優異,尤其電鑄高深寬比結構所面臨到的問題在於金屬離子不易補充入溝槽內,造成電鑄效率大幅降低。pulse current 會讓金屬離子在鍍浴裡趁Toff的時候游離至陰極表面附近,改變離子擴散的現象,來改善此高深寬比結構內金屬離子不足的影響。
    在合金電鍍過程中,還原電位較小之金屬其電沉積速率大於還原電位較高之金屬,稱為異常共鍍,如鎳(-0.257 V) 之還原電位較鈷 (-0.277 V) 低,但在電鍍過程中鈷析鍍量較鎳多。本研究選取特定鍍液 (complex sulfamate chloride bath),並發現電鍍過程中電流密度及溫度的改變為影響異常共鍍效果的主因,而異常共鍍效果進一步對鍍層中鈷含量及薄膜硬度產生影響。在這兩個條件變化之下,隨著電流密度與溫度的上昇,鍍層中鈷含量的原子百分比 [Co at% = Co/(Ni+Co) × 100%]大約從25%下降到15%並導致硬度從556 Hv下降到413 Hv。

    This study is divided into two main parts basically, including fabrication of porous anodic alumina films which act as a template and Nickel-Cobalt (Ni-Co) alloys electrodeposition on those self assembled porous anodic alumina (PAA) films. Through the electrical breakdown of the template, Ni-Co nanowires could be obtained by constant current square wave form at high temperature (55°C) to increase the mobility of metal ion in electrolyte.
    In order to avoid burning and powdering effect, we introduce the hybrid pulse technique to fabricate PAA films at room temperature in quiescent solution. Highly ordered hexagonal of parallel pore arrays were produced from commercial purity of 99% aluminum (Al) foils via two-step anodization process in 0.05 M oxalic acid. From experiment results showed that by utilizing pulse reverse voltage at the 1st step anodization as pre-pattern purpose, and pulse voltage subsequently is the best combined parameter. The diameter of resulting nanopore arrays could reach 30-60 nm. Process parameters, such as duration of anodization and types of voltage would greatly affect the structure and morphology of anodic films. Besides, purity of aluminum substrate is also one of the major considerations.
    On the other side, Ni-Co nanowires were prepared via template-guided electrodeposition. Moreover, when two or more elements are deposited simultaneously would encounter the effect of so-called anomalous codeposition behavior. The variation of current densities and temperature resulted in different Co atomic percentage [Co at% = Co/(Ni+Co) × 100%] in atomic ratio of the deposited films as well as the microhardness and morphology sequentially. Co at% in Ni-Co films gradually decreased with increasing current density and temperatures with variation from approximately 25 % to 15 % and lead to changes of microhardness from 556 Hv to 413 Hv.

    Table of contents 摘要 I Abstract III Acknowledgement V Table of contents VI List of Tables VIII List of Figures IX List of Symbols XIII Chapter 1. Introduction 1 Chapter 2. Literature Review 5 2-1 Anodic alumina anodization (AAO) 5 2-1-1 Basic theory of anodization 5 2-1-2 Formation and growth of Porous Anodic Alumina (PAA) 7 2-1-3 Burning and powdering effect 11 2-1-4 Pretexturing principle 14 2-1-5 PAA as template and other applications 18 2-2 Ni-Co alloy electrodeposition 22 2-2-1 Anomalous codeposition behavior 22 2-2-2 Different current shaped waveform electrodeposition 26 Chapter 3. Experimental Procedures 32 3-1 Aluminum Anodic Oxidation (AAO) 33 3-1-1 Aluminum foils anodization 33 3-1-2 Ni-Co nanowires electrodeposited on PAA template 36 3-1-3 Electrochemical deposition Ni-Co alloy films 36 3-2 Experiment Materials 38 3-2 Experimental Equipments 39 Chapter 4. Results and Discussions 44 4-1 Fabrication of PAA film from aluminum foils 44 4-1-1 PAA films fabricated potentiostatically 44 4-1-2 PAA films fabricated by hybrid pulse technique 46 4-2 The behavior of current and voltage refer to treatment time 60 4-3 Nickel alloys electrodeposition onto PAA self assembled template 65 4-4 Ni-Co films deposited on Au seed layer substrates 79 4-4-1 Dependency of Co content under different parameter conditions 79 4-4-2 Morphology and microhardness of Ni-Co alloys 84 4-4-3 Pulse current Ni-Co thin films electrodeposition 89 Chapter 5. Conclusions and Future Works 92 5-1 Conclusions 92 5-2 Future Work 94 References 95 Vita 103

    References
    1. C.C. Chen, J.H. Chen, and C.G. Chao, “Post-Treatment Method of Producing Ordered Array of Anodic Aluminum Oxide Using General Purity Commercial (99.7%) Aluminum”, Japanese Journal of Applied Physics, Vol.44, pp.1529-1533, 2005.
    2. D. Lo and R.A. Budiman, “Fabrication and Characterization of Porous Anodic Alumina Films from Impure Aluminum Foils”, Journal of The Electrochemical Society, Vol.154, pp.C60-C66, 2007.
    3. S. Anderson, “Mechanism of Electrolytic Oxidation of Aluminum”, Journal of Applied Physics, Vol.15, pp.477-480, 1944.
    4. Z. Wu, C. Richter, and L. Menon, “A Study of Anodization Process During Pore Formation in Nanoporous Alumina Template”, Journal of The Electrochemical Society, Vol.154, No.1, pp.E8-E12, 2007.
    5. M.T. Wu, “Preparation of Nanoporous Anodic Alumina by Anodization of Aluminum”, Department of Materials Science and Engineering National Cheng Kung University, Dissertation, 2005.
    6. O. Jessensky, F. Muller, and U. Gosele, “Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina”, Applied Physics Letters, Vol.72, pp.1173-1175, 1998.
    7. I. Vrublevsky, V. Parkoun, J. Schreckenbach, and W.A. Goedel, “Dissolution Behavior of The Barrier Layer of Porous Oxide Films on Aluminum Formed in Phosphoric Acid Studied by Re-Anodizing Technique”, Applied Surface Science, Vol.252, pp.5100-5108, 2006.
    8. L.B. Kong, “Synthesis of Y-Junction Nanotubes within Porous Anodic Aluminum Oxide Template”, Solid State Communications, Vol.133, pp.527-529, 2005.
    9. P.Y. Deng, X.D. Bai, X.W. Chen, and Q.L. Feng, “Anodic Oxidation of Aluminum at High Current Densities and Mechanism of Film Formation”, Journal of The Electrochemical Society, Vol.151, pp.B284-B289, 2004.
    10. C.Y. Han, G..A. Willing, Z. Xiao, and H.H. Wang, “Control of The Anodic Aluminum Oxide Barrier Layer Opening Process by Wet Chemical Etching”, Langmuir, Vol.23, pp.1564-1568, 2007.
    11. M. Tang, J.P. He, J.H. Zhou, P. He, “Pore Widening With The Assistance of Ultrasonic: A Novel Process for Preparing Porous Anodic Aluminum Oxide Membrane”, Materials Letters, Vol.60, pp.2098-2100, 2006.
    12. X. Wang and G..R. Han, “Fabrication and Characterization of Anodic Aluminum Oxide Template”, Microelectronic Engineering, Vol.60, pp.166-170, 2003.
    13. I.D. Graeve, H. Terryn, and G..E. Thompson, “Influence of Local Heat Development on Film Thickness for Anodizing Aluminum in Sulfuric Acid”, Journal of The Electrochemical Society, Vol.150, pp.B158-B165, 2003.
    14. J.M. Montero-Moreno, M. Sarret, and C. Muller, “Some Considerations on The Influence of Voltage in Potentiostatic Two Step Anodizing of AA1050, Journal of The Electrochemical Society, Vol.154, pp.C169-C174, 2007.
    15. A. Kirchner, K.J.D. MacKenzie, I.W.M. Brown, T. Kemmitt, M.E. Bowden, “Structural Characterization of Heat Treated Anodic Alumina Membranes Prepared Using A Simplified Fabrication Process”, Journal of Membrane Science, Vol.287, pp.264-270, 2007.
    16. G.D. Sulka and K.G. Parkoła, “Temperature Influence on Well Ordered Nanopore Structures Grown by Anodization of Aluminum in Sulphuric Acid”, Electrochimica Acta, Vol.52, pp.1880-1888, 2007.
    17. L.E. Fratila-Apachitei, J. Duszcyzyk, and L. Katgerman, “AlSi(Cu) Anodic Oxide Layers Formed in H2SO4 at Low Temperature Using Different Current Waveforms”, Surface and Coatings Technology, Vol.165, pp.232-240, 2003.
    18. D.H. Fan, G.Q. Ding, W.Z. Shen, and M.J. Zheng, “Anion Impurities in Porous Alumina Membranes: Existence and Functionality”, Microporous and Mesoporous Materials, Vol.100, pp.154-159, 2007.
    19. X.F. Zhu, D.D. Li, Y. Song, and Y.H. Xiao, “The Study on Oxygen Bubbles of Anodic Alumina Based on High Purity Aluminum”, Materials Letters, Vol.59, pp.3160-3163, 2005.
    20. J. H. Yuan, F. Y. He, D. C. Sun, and X. H. Xia, “A Simple Method for Preparation of Through Hole Porous Anodic Alumina Membrane”, Chemical Materials, Vol.16, pp.1841-1844, 2004.
    21. W. Chen, J.S. Wu, J.H. Yuan, X.H. Xia, and X.H. Lin, “An Environemt Friendly Electrochemical Detachment Method For Porous Anodic Alumina”, Journal of Electroanalytical Chemistry, Vol.600, pp.257-264, 2007.
    22. J.H. Yuan, W. Chen, R.J. Hui, Y.L. Hu, and X.H. Xia, “Mechanism of One-Step Voltage Pulse Detachment of Porous Anodic Alumina Membranes”, Electrochimica Acta, Vol.51, pp.4589-4595, 2006.
    23. C.L. Xu, H. Li, G.Y. Zhao, and H.L. Li, “Electrodeposition and Magnetic Properties of Ni Nanowire Arrays on Anodic Aluminum Oxide Ti-Si Substrate”, Applied Surface Science, Vol.253,pp.1399-1403, 2006.
    24. K. Yokohama, H. Konno, H. Takahashi, and M. Nagayama, “Advantages of Pulse Anodizing”, Plating and Surface Finishing, pp.62-65, 1982.
    25. A.D. Juhl, Ph.D., M.Sc, “Theoretical Introduction to Pulse Anodizing” (http://www.aluconsult.com/articles/Paper%20-%20AAC%20september.pdf)
    26. R. Grover, K.L. Narashimhan, and D.K. Sharma, “Pulse Anodic Anodization of Porous Silicon Films”, Journal of Porous Materials, Vol.7, pp.377-379, 2000.
    27. A.D. Juhl, Ph.D., M.Sc, “Pulse Anodizing in An Existing Line” (http://www.aluconsult.com/articles/Pulse%20Anodizing%20in%20an%20Existing%20Anodizing%20Line.pdf)
    28. H.H. Shih and S.L. Tzou, “Study of Anodic Oxidation of Aluminum in Mixed Acid Using A Pulsed Current”, Surface and Coatings Technology, Vol.124, pp.278-285, 2000.
    29. K. Okubo, S. Suyarna. Y.A. Sakura, “Studies of Microstructures of Anodic Oxide Films on Aluminum by pulse current with a negative component”, Journal of Surface Finishing Society of Japan, Vol.40, 1989.
    30. Z. Xu, B. Zhou, X. Xu, X.L. Wang, D. Wu, and J. Shen, “Fabrication of Porous Anodic Alumina Films by Using Two-Step Anodization Process”, Atomic Energy Science and Technology, Vol.40, 2006.
    31. S.F. Bidoz, V. Kitaev, D. Roudkevitch, I. Manners, and G.A. Ozin, “Highly Ordered Nanosphered Imprinted Nanochannel Alumina (NINA)”, Advanced Materials, Vol.16, No.23-24, pp.2193-2196, 2004.
    32. N.W. Liu, A. Datta, C.Y. Liu, and Y.L. Wang, “High Speed Focused Ion Beam Patterning For Guiding The Growth of Anodic Alumina Nanochannel Arrays”, Applied Physics Letters, Vol.82, pp.1281-1283, 2003.
    33. H. Matsuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina”, Advance Materials, Vol.13, pp.189-192, 2001.
    34. C.G. Wu, H.L. Lin, N.L. Shau, “Magnetic Nanowires Via Template Electrodeposition”, Journal of Solid State Electrochemistry, Vol.10, pp.198-202, 2006.
    35. L.H. Mai, P.T. Mai Hoa, T.B. Nguyen, T.T.H Nguyen, D.K. An, “Some Investigations Results of The Instability of Humidity Sensors Based on Alumina and Porous Silicon Materials”, Sensors and Actuators B, Vol.66, pp.63-65, 2000.
    36. R.K. Nahar, “Study of the Performance Degradation of Thin Film Aluminum Oxide Sensor at High Humidity”, Sensors and Actuators B, Vol.63, pp.49-54, 2000.
    37. D. Kim, W. Hwang, H.C. Park, and K.H. Lee, “Superhydrophobic Nanowire Entanglement Structures”, Journal of Micromechanical and MicroengineeringVol.16, pp.2593-2597, 2006.
    38. I.Z. Rahman, K.M. Razeeb, Md. Kamruzzaman, and M. Serantoni, “Characterization of Electrodeposited Nickel Nanowires Using NCA Template”, Journal of Materials Processing Technology, Vol.153-154, pp.811-815, 2004.
    39. I. Serebrennikova, P. Vanysek, and V.I. Birss, “Characterization of Porous Aluminum Oxide Films by Metal Electrodeposition”, Electrochimica Acta, Vol.42, pp.145-151, 1997.
    40. R. Redon, A.V. Olmos, M.E. Mata Zamora, A. Ordonez Medrano, F. Rivera Torres, and J.M. Saniger, “Contact Angle Studies on Anodic Porous Alumina”, Revision of Advance Materials Science, Vol.11, pp.79-87, 2006.
    41. A.J. Yin, J.Li, W.Jian, A.J. Bennett, and J.M. Xu, “Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition”, Applied Physics Letters, Vol.79, pp.1039-1041, 2001.
    42. K. Nielsch, F. Muller, A.P. Li, and U. Gosele, “Uniform Nickel Deposition Into Ordered Alumina Pores by Electrodeposition”, Advanced Materials, Vol.12, pp.582-586, 2000.
    43. M.T. Wu, I.C. Leu, J.H. Yen, and M.H. Hon, “Novel Electrodeposition Behavior of Ni on Porous Anodic Alumina Templates Without A Conductive Interlayer”, Journal of Physic Chemistry B, Vol.109, pp.9575-9580, 2005.
    44. M. Tian, S. Xu, J. Wang, N. Kumar, E. Wertz, Q. Li, P.M. Campbell, M.H.W. Chan, and T.E. Mallouk, “Penetrating The Oxide Barrier in situ and Separating Freestanding Porous Anodic Alumina Films in One Step”, Nano Letters, Vol.5, pp.697-703, 2005.
    45. Y.T. Tian, G.W. Meng, T. Gao, S.H. Sun, T. Xie, X.S. Peng, C.H. Ye and L.D. Zhang, “Alumina Nanowire Arrays Standing on A Porous Anodic Alumina Membrane”, Nanotechnology, Vol.15, pp.189-191, 2004.
    46. R.P. Jiaa, Y. Shena, H.Q. Luoa, X.G. Chena, Z.D. Hua, and D.S. Xue, “Photoluminescence Behaviors of Morin-Human Immunoglobulin on Porous Anodized Aluminum Oxide Films”, Thin Solid Films, Vol.471, pp.264-269, 2005.
    47. A. Mockutė, V. Kubilius, and R. Tomašiūnas, “Recent Developments on Formation of Ordered Aluminum Oxide Films for Photonic Crystal Application”, IEEE, 2005.
    48. J.H. Chen, C.P. Huang, C.G. Chao, and T.M. Chen, “The Investigation of Photoluminescence Centers in Porous Alumina Membranes”, Applied Physics A, Vol.84, pp.297-300, 2006.
    49. L. Shi, C.F. Sun, F. Zhou, and W.M. Liu, “Electrodeposited Nickel Cobalt Composite Coating Containing Nano Sized Si3N4”, Materials Science and Engineering A, Vol.397, pp.190-194, 2005.
    50. E. G´omez, S. Pan´e, X. Alcobe, and E. Vall´es, “Influence of A Cationic Surfactant in The Ni-Co Alloy Electrodeposition”, Electrochimica Acta, Vol.51, pp.5703-5709, 2006.
    51. Y. Zhuang and E. J. Podlaha, “NiCoFe Ternary Alloy Deposition”, Journal of The Electrochemical Society, Vol.150, pp.C219-C224, 2003.
    52. G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, and W. Wang, “Effect of Current Density on Microstructure and Properties of Bulk Nanocrystalline Ni-Co Alloys Prepared by JED”, Journal of The Electrochemical Society, Vol.153, pp.C305-C308, 2006.
    53. A. Bai and C.C. Hu, “Effects of Electroplating Variables on The Composition and Morphology of Nickel Cobalt Deposits Plated Plated through Means of Cyclic Voltammetry”, Electrochimica Acta, Vol.47, pp.3447-3456, 2002.
    54. C. Lupi and D. Pilone, “Electrodeposition of Nickel Cobalt Alloys: The Effect of Process Parameters on Energy Consumption”, Minerals Engineering, Vol.14, pp.1403-1410, 2001.
    55. G. Qiao, T. Jing, N. Wang, Y. Gao, X. Zhao, J. Zhou, W. Wang, “High Speed Jet Electrodeposition and Microstructure of Nanocrystalline Ni-Co Alloys”, Electrochimica Acta, Vol.51, pp.85-92, 2005.
    56. L. Wang, Y. Gao, Q. Xue, H. Liu, T. Xu, “Microstructure and Tribological Properties of Electrodeposited Ni-Co alloys Deposits”, Applied Surface Science, Vol.242, pp.326-332, 2005.
    57. C. Fan and D.L. Piron, “Study of Anomalous Ni-Co Deposition with Different Electrolytes and Current Densities”, Electrochimica Acta, Vol.41, pp.1713-1719, 1996.
    58. D. Golodnitsky, N.V. Gudin and G.A.Volyanuk, “Study of Nickel Cobalt Electrodeposition from a Sulfamate Electrolyte with Different Anion Additives”, Journal of The Electrochemical Society, Vol.147, pp.4156-4163, 2000.
    59. S. Vilain, J. Ebothe, and M. Troyon, “Surface Roughness and Composition Effects on The Magnetic Properties of Electrodeposited Ni-Co Alloys”, Journal of Magnetism and Magnetic Materials, Vol.157, pp.274-275, 1996.
    60. L. Burzynska and E. Rudnik, “The Influence of Electrolysis Parameters on The Composition and Morphology of Co-Ni Alloys”, Hydrometallurgy, Vol.54, pp.133-149, 2000.
    61. W.E.G. Hansal, B. Tury, M. Halmdienst, M.L. Vars´anyi, and W. Kautek, “Pulse Reverse Plating of Ni-Co Alloys: Deposition Kinetics of Watts, Sulfamate, and Chloride Electrolytes”, Electrochimica Acta, Vol.52, pp.1145-1151, 2006.
    62. A. Bai and C.C. Hu, “Composition Controlling of Co-Ni and Fe-Co Alloys Using Pulse Reverse Electroplating through Means of Experimental Strategies”, Electrochimica Acta, Vol.50, pp.1335-1345, 2005.
    63. K.P. Wong, K.C. Chan, and T.M. Yue, “A Study of Surface Finishing in Pulse Current Electroforming of Nickel by Utilizing Different Shaped Waveforms”, Surface and Coatings Technology, Vol.115, pp.132-139, 1999.
    64. K.C. Chan, W.K. Chan, N.S. Qu, “Effect of Current Waveform on The Deposit Quality of Electroformed Nickels”, Journal of Materials Processing Technology, Vol.89-90, pp.447-450, 1999.
    65. N.S. Qu, K.C. Chan, and D. Zhu, “Surface Roughening in Pulse Current and Pulse Reverse Current Electroforming of Nickel”, Surface and Coatings Technology, Vol.91, pp.220-224, 1997.
    66. C.K. Chung and W.T. Chang, “Effect of Pulse Frequency on The Morphology and Nanoindentation Property of Electroplated Nickel Films”, Microsystem Technology, Vol.13, pp.537-541, 2006.
    67. A.J. Bard, L.R. Faulkner, “Electrochemical Methods Fundamentals and Applications second edition”, John Willey & Sons Inc, 2001.
    68. C.H. Seah, S. Mridha, Y.K. Siew, G. Sarkar, and L.H. Chan, “Trench and Via Filling With Electroplated Copper: Effect of Current Density and Pulse Waveform”, Materials Research Society, Symp. Proc., Vol.612, pp.D9.1.1-D9.1.7, 2000.

    下載圖示 校內:2009-07-04公開
    校外:2010-07-04公開
    QR CODE