| 研究生: |
黃絜 Huang, Chieh |
|---|---|
| 論文名稱: |
Control A.I. or Be Controlled by A.I.: The Role of Work Curiosity, Task Complexity,
and Task Variety Control A.I. or Be Controlled by A.I.: The Role of Work Curiosity, Task Complexity, and Task Variety |
| 指導教授: |
張佑宇
Chang, Yu-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際經營管理研究所碩士在職專班 Institute of International Management (IIMBA--Master)(on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 人工智慧生成的內容 (AIGC) 、對 AIGC 的信任 、對 AIGC 的不信任 、快樂驅動的工作好奇心 、耐壓的工作好奇心 、工作特徵 |
| 外文關鍵詞: | AI-Generated Content (AIGC), Trust in AIGC, Distrusted in AIGC, Joy-driven Work Curiosity, Stress-Tolerating Work Curiosity, Job Characteristics |
| 相關次數: | 點閱:49 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,在大型語言模型的成熟和擴散的推動下,人工智慧的快速發展導致了生成式人工智慧工具的出現。這些工具很快就成為提高知識工作者生產力的關鍵。透過大型語言模式帶來的發散性思維和認知能力,生成式人工智慧平台提供了有別於傳統資訊系統的生產力提升,培養了更廣泛的思維和創造力。生成式人工智慧的主動性和創造性屬性不僅增強了能力,也為知識工作者帶來了新的可能性。然而,專業知識工作者和生成人工智慧之間的合作仍然是一個不斷發展且研究不足的現象。
工作好奇心,即探索新經驗和知識的動力,深刻影響員工對人工智慧任務協作的態度。本研究借鑒自決理論 (SDT),探討了專業工作者的好奇心如何影響他們對工作中 AIGC 的信任。遵循 SDT 的子理論—認知評估理論,我們研究了員工感知到的工作複雜性和任務多樣性如何影響好奇心-信任關係。實證資料收集自 302 名具有 AI 工具工作經驗的專業級員工,包括來自台灣各行業的研發人員、軟體產品/專案經理以及行銷和銷售專業人員。
研究結果表明,快樂驅動的工作好奇心會積極影響員工對 AIGC 的信任,而承受壓力的工作好奇心則與對 AIGC 的不信任呈正相關。有趣的是,我們發現高工作複雜性削弱了快樂驅動的好奇心對 AIGC 信任的正面影響,並放大了耐壓好奇心對 AIGC 不信任的負面影響。此外,當員工執行高度多樣化的任務時,快樂驅動的好奇心對 AIGC 信任的正面影響變得更加明顯。這些發現為人工智慧與人類協作提供了新的見解,並強調了人工智慧驅動的智力活動背景下組織心理學的未來研究途徑。這項研究強調了工作好奇心在決定個人對人工智慧協作的態度方面的關鍵作用,為應用心理學研究和人機互動文獻做出了貢獻。
The rapid development of AI in recent years, driven by the maturation and proliferation of large language models, has led to the emergence of generative AI tools. These tools have quickly become essential for enhancing the productivity of knowledge workers. Through the divergent thinking and cognitive capabilities enabled by large language models, generative AI platforms offer a productivity boost distinct from traditional information systems, fostering broader thinking and creativity. Generative AI’s proactive and creative attributes not only enhance capabilities but also enable new possibilities for knowledge workers. However, collaboration between professional knowledge workers and generative AI remains an evolving and under-researched phenomenon.
Work curiosity, the motivational drive to explore new experiences and knowledge, profoundly influences employees’ attitudes towards task collaboration with AI. Drawing on Self-Determination Theory (SDT), this study explores how professional workers’ curiosity affects their trust in AIGC at work. Following the SDT’s sub-theory, Cognitive Evaluation Theory, we investigate how the curiosity-trust connection is impacted by employees’ perceived job complexity and task variety. The empirical data was collected from 302 professional-level employees with AI tool experience for work purposes, including R&D personnel, software product/project managers, and marketing and sales professionals from various industries in Taiwan.
Findings indicate that joy-driven work curiosity positively affects employees’ trust in AIGC, whereas stress-tolerating work curiosity is positively associated with distrust in AIGC. Interestingly, we found that high job complexity attenuates the positive effect of joy-driven curiosity on trust in AIGC and amplifies the negative effect of stress-tolerant curiosity on distrust in AIGC. Moreover, when employees perform tasks with high variety, the positive influence of joy-driven curiosity on trust in AIGC becomes more pronounced. These findings provide new insights into AI-human collaboration and highlight avenues for future research on organizational psychology in the context of the AI-driven intellectual activities. This study contributes to applied psychology research and human-computer interaction literature by highlighting the critical role of work curiosity in determining individuals’ attitudes towards AI collaboration.
Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions: sage.
Barr, M. S., Kumar, A., & Litan, R. E. (2007). Building inclusive financial systems: A framework for financial access: Rowman & Littlefield.
Baumeister, R. F., & Leary, M. R. (2017). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Interpersonal Development, 57-89.
Bergdahl, J., Latikka, R., Celuch, M., Savolainen, I., Mantere, E. S., Savela, N., & Oksanen, A. (2023). Self-determination and attitudes toward artificial intelligence: Cross-national and longitudinal perspectives. Telematics and Informatics, 82, 102013.
Berlyne, D. E. (1960). Conflict, arousal, and curiosity.
Berlyne, D. E. (1978). Curiosity and learning. Motivation and emotion, 2(0), 97-175.
Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Paper presented at the Conference on fairness, accountability and transparency.
Bughin, J., Hazan, E., Sree Ramaswamy, P., DC, W., & Chu, M. (2017). Artificial intelligence the next digital frontier.
Campion, M. A., & McClelland, C. L. (1993). Follow-up and extension of the interdisciplinary costs and benefits of enlarged jobs. Journal of Applied Psychology, 78(3), 339.
Daugherty, P. R., & Wilson, H. J. (2018). Human+ machine: Reimagining work in the age of AI: Harvard Business Press.
Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.
De Charms, R. (2013). Personal causation: The internal affective determinants of behavior: Routledge.
Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological inquiry, 11(4), 227-268.
Deci, E. L., & Ryan, R. M. (2013). Intrinsic motivation and self-determination in human behavior: Springer Science & Business Media.
DeStefano, T., De Backer, K., & Moussiegt, L. (2017). Determinants of digital technology use by companies.
Drouin, N., Müller, R., & Sankaran, S. (2013). Novel approaches to organizational project management research: Translational and transformational (Vol. 29): CBS Press.
Dweck, C. S. (2006). Mindset: The new psychology of success: Random house.
Edwards, R. W., Jumper‐Thurman, P., Plested, B. A., Oetting, E. R., & Swanson, L. (2000). Community readiness: Research to practice. Journal of Community Psychology, 28(3), 291-307.
Freud, S. (2015). Beyond the pleasure principle. Psychoanalysis and History, 17(2), 151-204.
Fried, Y., & Ferris, G. R. (1987). The validity of the job characteristics model: A review and meta‐analysis. Personnel Psychology, 40(2), 287-322.
Glikson, E., & Woolley, A. W. (2020). Human trust in artificial intelligence: Review of empirical research. Academy of Management Annals, 14(2), 627-660.
Grant, R. M. (1996). Toward a knowledge‐based theory of the firm. Strategic Management Journal, 17(S2), 109-122.
Grossnickle, E. M. (2016). Disentangling curiosity: Dimensionality, definitions, and distinctions from interest in educational contexts. Educational Psychology Review, 28(1), 23-60.
Gulati, S., Sousa, S., & Lamas, D. (2019). Design, development and evaluation of a human-computer trust scale. Behaviour & Information Technology, 38(10), 1004-1015.
Guzman, A. L., & Lewis, S. C. (2020). Artificial intelligence and communication: A human–machine communication research agenda. New Media & Society, 22(1), 70-86.
Hackman, J. R., & Lawler, E. E. (1971). Employee reactions to job characteristics. Journal of Applied Psychology, 55(3), 259.
Hackman, J. R., & Oldham, G. R. (1975). Development of the job diagnostic survey. Journal of Applied Psychology, 60(2), 159.
Hackman, J. R., & Oldham, G. R. (1976). Motivation through the design of work: Test of a theory. Organizational Behavior and Human Performance, 16(2), 250-279.
Hengstler, M., Enkel, E., & Duelli, S. (2016). Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technological Forecasting and Social Change, 105, 105-120.
Huang, M.-H., & Rust, R. T. (2013). IT-related service: A multidisciplinary perspective. Journal of Service Research, 16(3), 251-258.
Humphrey, S. E., Nahrgang, J. D., & Morgeson, F. P. (2007). Integrating motivational, social, and contextual work design features: A meta-analytic summary and theoretical extension of the work design literature. Journal of Applied Psychology, 92(5), 1332.
Iansiti, M., & Lakhani, K. R. (2020). Competing in the age of AI: Strategy and leadership when algorithms and networks run the world: Harvard Business Press.
Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11(4), 87-114.
Kahya, E. (2007). The effects of job characteristics and working conditions on job performance. International Journal of Industrial Ergonomics, 37(6), 515-523.
Kashdan, T. B., & McKnight, P. E. (2009). Origins of purpose in life: Refining our understanding of a life well lived. Psihologijske Teme, 18(2), 303-313.
Kashdan, T. B., Stiksma, M. C., Disabato, D. J., McKnight, P. E., Bekier, J., Kaji, J., & Lazarus, R. (2018). The five-dimensional curiosity scale: Capturing the bandwidth of curiosity and identifying four unique subgroups of curious people. Journal of Research in Personality, 73, 130-149.
Kolbjørnsrud, V., Amico, R., & Thomas, R. J. (2017). Partnering with AI: How organizations can win over skeptical managers. Strategy & Leadership, 45(1), 37-43.
Kuipers, M. (2018). Comparing countries on characteristics of the ILO ‘Decent Work Agenda’: A WageIndicator Foundation Perspective.
Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50-80.
Leguina, A. (2015). A primer on partial least squares structural equation modeling (PLS-SEM). In: Taylor & Francis.
Lewis, M., Sycara, K., & Walker, P. (2018). The role of trust in human-robot interaction. Foundations of Trusted Autonomy, 135-159.
Lichtenthaler, U. (2018). Beyond artificial intelligence: Why companies need to go the extra step. Journal of Business Strategy, 41(1), 19-26.
Litman, J. A. (2010). Relationships between measures of I-and D-type curiosity, ambiguity tolerance, and need for closure: An initial test of the wanting-liking model of information-seeking. Personality and Individual Differences, 48(4), 397-402.
Litman, J. A., & Silvia, P. J. (2006). The latent structure of trait curiosity: Evidence for interest and deprivation curiosity dimensions. Journal of Personality Assessment, 86(3), 318-328.
Litman, J. A., & Spielberger, C. D. (2003). Measuring epistemic curiosity and its diversive and specific components. Journal of Personality Assessment, 80(1), 75-86.
Litman, T. (2012). Evaluating public transportation health benefits: Victoria Transport Policy Institute Victoria, BC, Canada.
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 75.
Morgeson, F. P., & Humphrey, S. E. (2006). The Work Design Questionnaire (WDQ): developing and validating a comprehensive measure for assessing job design and the nature of work. Journal of Applied Psychology, 91(6), 1321.
Park, N., Peterson, C., & Seligman, M. E. (2004). Strengths of character and well-being. Journal of Social and Clinical Psychology, 23(5), 603-619.
Parker, S. K., Wall, T. D., & Cordery, J. L. (2001). Future work design research and practice: Towards an elaborated model of work design. Journal of Occupational and Organizational Psychology, 74(4), 413-440.
Piaget, J., & Cook, M. (1952). The origins of intelligence in children (Vol. 8): International Universities Press New York.
Poupart, P., Vlassis, N., Hoey, J., & Regan, K. (2006). An analytic solution to discrete Bayesian reinforcement learning. Paper presented at the proceedings of the 23rd international conference on machine learning.
Rasouli, A., Lanillos, P., Cheng, G., & Tsotsos, J. K. (2020). Attention-based active visual search for mobile robots. Autonomous Robots, 44(2), 131-146.
Renner, B. (2006). Curiosity about people: The development of a social curiosity measure in adults. Journal of Personality Assessment, 87(3), 305-316.
Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards artificial intelligence scale. Computers in Human Behavior Reports, 1, 100014.
Schutte, N. S., & Malouff, J. M. (2020). A meta‐analysis of the relationship between curiosity and creativity. The Journal of Creative Behavior, 54(4), 940-947.
Siau, K., & Wang, W. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47-53.
Silvia, P. J. (2005). Cognitive appraisals and interest in visual art: Exploring an appraisal theory of aesthetic emotions. Empirical Studies of The Arts, 23(2), 119-133.
Sims Jr, H. P., Szilagyi, A. D., & Keller, R. T. (1976). The measurement of job characteristics. Academy of Management Journal, 19(2), 195-212.
Sousa, S., Lamas, D., & Dias, P. (2014). A model for human-computer trust: Contributions towards leveraging user engagement. Paper presented at the Learning and Collaboration Technologies. Designing and Developing Novel Learning Experiences: First International Conference, LCT 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece, June 22-27, 2014, Proceedings, Part I 1.
Stein, A., Maier, R., Rosenbauer, L., & Hähner, J. (2020). XCS classifier system with experience replay. Paper presented at the Proceedings of the 2020 Genetic and Evolutionary Computation Conference.
Sundar, S. S. (2020). Rise of machine agency: A framework for studying the psychology of human–AI interaction (HAII). Journal of Computer-Mediated Communication, 25(1), 74-88.
Verweij, G. (2017). Sizing the prize: what’s the real value of AI for your business and how can you capitalise?
Wall, T. D., & Martin, R. (1987). Job and work design: John Wiley & Sons.
Wang, J., & Wang, X. (2019). Structural equation modeling: Applications using Mplus: John Wiley & Sons.
Wang, S., & Noe, R. A. (2010). Knowledge sharing: A review and directions for future research. Human Resource Management Review, 20(2), 115-131.
White, R. W. (1959). Motivation reconsidered: The concept of competence. Psychological Review, 66(5), 297.
Wu, H., Luo, W., Lin, A., Hao, F., Olteanu-Raimond, A.-M., Liu, L., & Li, Y. (2023). SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images. Computers, Environment and Urban Systems, 100, 101921.
Wu, J., Yan, J., Zhang, L., Chen, J., Cheng, Y., Wang, Y., . . . Zhang, L. (2022). The effectiveness of distraction as preoperative anxiety management technique in pediatric patients: A systematic review and meta-analysis of randomized controlled trials. International Journal of Nursing Studies, 130, 104232.
Yadav, R. K., Jiao, L., Granmo, O.-C., & Goodwin, M. (2021). Enhancing interpretable clauses semantically using pretrained word representation. arXiv preprint arXiv:2104.06901.
Yagoda, R. E., & Gillan, D. J. (2012). You want me to trust a ROBOT? The development of a human–robot interaction trust scale. International Journal of Social Robotics, 4, 235-248.
Yunjiu, L., Wei, W., & Zheng, Y. (2022). Artificial intelligence-generated and human expert-designed vocabulary tests: A comparative study. Sage Open, 12(1), 21582440221082130.
Zuckerman, M. (1979). Sensation seeking and risk taking. In Emotions in personality and Psychopathology , Springer.
Zuckerman, M. (2014). Sensation seeking (psychology revivals): Beyond the optimal level of arousal: Psychology Press.