| 研究生: |
張嘉元 Chang, Chia-Yuan |
|---|---|
| 論文名稱: |
適用於未知資料採樣奇異系統的一種基於改良型函數觀測器之等效輸入干擾估測器 A Modified Functional Observer-based EID Estimator for Unknown Sampled-data Singular Systems |
| 指導教授: |
蔡聖鴻
Tsai, Sheng-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 最佳線性二次數位追蹤器 、干擾估測器 、函數型觀測器 、觀測/卡爾曼濾波器鑑別法 、奇異系統 、等效輸入干擾 |
| 外文關鍵詞: | Optimal Linear Quadratic Digital Tracker, Disturbance Estimator, Functional observer, Observer/Kalman Filter Identification (OKID), Singular System, Equivalent Input Disturbance (EID) |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出適用於具有未知輸入輸出擾動之未知資料採樣奇異方陣/非方陣系統的一種基於觀測/卡爾曼濾波器鑑別法之線性二次數位追蹤器,和一種新的基於函數型觀測器之離散等效輸入干擾估測器。在本論文中,首先探討即使無脈衝項之奇異線性二次追蹤器的問題有解,但在常見的系統中,可能會使基於追蹤器的廣義代數黎卡笛方程式無解。為了克服這項問題,我們巧妙地採取一種技術,即對奇異系統降階為等效真分正規模型,以解決廣義代數黎卡笛方程式的問題;同時此方法也讓MATLAB無法模擬線性連續奇異系統的時間響應問題,變為可行。之後,對含有未知匹配/不匹配輸入和輸出干擾的資料採樣真分系統,提出基於函數型觀測器的新設計法,以適用一種基於等效真分正規模型的離散等效輸入干擾估測器。最後對整體未知的資料採樣奇異系統,先基於觀測/卡爾曼濾波器鑑別法建立離散等效真分正規模型,接著設計基於預測型狀態估測器的最佳線性二次數位追蹤器,和離散等效輸入干擾估測器;特點在於,不同於大部分類型的未知輸入估測法,採用新的等效輸入干擾估測法已不再侷限於未知干擾的維度。
This thesis presents an observer/Kalman filter identification (OKID) method-based linear quadratic digital tracker (LQDT) and a new functional observer-based discrete equivalent input disturbance (EID) estimator for unknown square/non-square singular sampled-data systems with unknown input and output disturbances. In this thesis, we first indicate that even though the impulsive mode-free singular linear quadratic tracker problem (SLQTP) has a solution, under some quite general cases, the tracker-based generalized algebraic Riccati equation (GARE) might have no solution. To overcome this issue, an ingenious skill, involving the introduced reduced-order equivalent proper regular model (EPRM) of the singular system, is presented to solve for the tracker-based GARE, so that it leads to a potential applicability to a wide class of servo control problems for a singular system. Besides, based on the presented EPRM of the singular system, simulating the time response of continuous linear singular systems to arbitrary inputs, which is not supported by MATLAB, becomes feasible. Furthermore, a new functional observer-based design methodology for the discrete EID estimator of the discrete EPRM has been proposed in this thesis for a proper sampled-data system with unknown matched/mismatched input and output disturbances. Finally, for an unknown singular sampled-data system, the discrete-time version EPRM of the singular sampled-data system is then constructed based on the off-line OKID method, followed by the robust prediction-based state-estimate optimal LQDT associated with the (plug-in) discrete EID for the unknown singular sampled-data system. Foremost, the constraints on the dimension of unknown disturbances existed in a wide class of unknown input estimation methods is eliminated by using the new EID estimation skill.
[1] Abidi, K., J.-X. Xu, and Y. Xinghuo, “On the discrete-time integral sliding-mode control,” IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 709-715, 2007.
[2] Chang, J.-L., “Applying discrete-time proportional integral observers for state and disturbance estimations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 814-818, 2006.
[3] Chang, J.-L., H.-C. Ting, and Y.-P. Chen, “Robust discrete-time output tracking controller design for nonminimum phase systems,” Journal of System Design and Dynamics, vol. 2, no. 4, pp. 950-961, 2008.
[4] Chen, J., R.J. Patton, and H.-Y. Zhang, “Design of unknown input observers and robust fault detection filters,” International Journal of control, vol. 63, no. 1, pp. 85-105, 1996.
[5] Chen, M.-S. and C.-C. Chen, “Unknown input observer for linear non-minimum phase systems,” Journal of the Franklin Institute, vol. 347, no. 2, pp. 577-588, 2010.
[6] Corless, M. and J. Tu, “State and input estimation for a class of uncertain systems,” Automatica, vol. 34, no. 6, pp. 757-764, 1998.
[7] Ebrahimzadeh, F., J.S.-H. Tsai, M.-C. Chung, Y.T. Liao, S.-M. Guo, L.-S. Shieh, and L. Wang, “A generalised optimal linear quadratic tracker with universal applications. Part 2: discrete-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 397-416, 2017.
[8] Ebrahimzadeh, F., J.S.-H. Tsai, Y.T. Liao, M.-C. Chung, S.-M. Guo, L.-S. Shieh, and L. Wang, “A generalised optimal linear quadratic tracker with universal applications–part 1: continuous-time systems,” International Journal of Systems Science, vol. 48, no. 2, pp. 376-396, 2017.
[9] Feng, J.-E. “Finite time functional observers for discrete-time singular systems with unknown inputs,” Control Conference (CCC), 2010 29th Chinese, 2010.
[10] Gao, Z. and D.W. Ho, “State/noise estimator for descriptor systems with application to sensor fault diagnosis,” IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1316-1326, 2006.
[11] Huang, C.-C., J.S.-H. Tsai, S.-M. Guo, Y.-J. Sun, and L.-S. Shieh, “Solving algebraic Riccati equation for singular system based on matrix sign function,” Int. J. Innov. Comput. Inform. Control, vol. 9, no., pp. 2771-2788, 2013.
[12] Juang, J.-N., Applied system identification, 1994.
[13] Kawamoto, A., K. Takaba, and T. Katayama, “On the generalized algebraic Riccati equation for continuous-time descriptor systems,” Linear algebra and its applications, vol. 296, no. 1-3, pp. 1-14, 1999.
[14] Lee, H.J., J.B. Park, and Y.H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1595-1600, 2003.
[15] Lewis, F.L., “A survey of linear singular systems,” Circuits, Systems and Signal Processing, vol. 5, no. 1, pp. 3-36, 1986.
[16] Lewis, F.L. and V. Syrmos, Optimal Control, J. Wiley, 1995.
[17] Liu, R.-J., G.-P. Liu, M. Wu, and Z.-Y. Nie, “Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach,” Journal of the Franklin Institute, vol. 351, no. 6, pp. 3364-3377, 2014.
[18] Radke, A. and Z. Gao. “A survey of state and disturbance observers for practitioners,” American Control Conference, 2006.
[19] Roberts, J.D., “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” International Journal of Control, vol. 32, no. 4, pp. 677-687, 1980.
[20] She, J.-H., M. Fang, Y. Ohyama, H. Hashimoto, and M. Wu, “Improving disturbance-rejection performance based on an equivalent-input-disturbance approach,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 380-389, 2008.
[21] Shieh, L.S., Y.T. Tsay, and R. Yates. “Some properties of matrix sign functions derived from continued fractions,” IEE Proceedings D-Control Theory and Applications, 1983.
[22] Tang, D., L. Chen, and E. Hu. “A novel unknown-input estimator for disturbance estimation and compensation,” Proceedings of Australasian Conference on Robotics and Automation, The University of Melbourne, 2014.
[23] Termehchy, A. and A. Afshar, “A novel design of unknown input observer for fault diagnosis in non-minimum phase systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 8552-8557, 2014.
[24] Trinh, H. and T. Fernando, Functional observers for dynamical systems, vol. 420, Springer Science & Business Media, 2011.
[25] Tsai, J.S.-H., C.-T. Wang, and L. San Shieh, “Model conversion and digital redesign of singular systems,” Journal of the Franklin Institute, vol. 330, no. 6, pp. 1063-1086, 1993.
[26] Tsai, J.S.-H., C.-H. Chen, M.-J. Lin, S.-M. Guo, and L.-S. Shieh, “Novel quadratic tracker and observer for the equivalent model of the sampled-data linear singular system,” Applied Mathematical Sciences, vol. 6, no. 68, pp. 3381-3409, 2012.
[27] Tsai, J.S.-H., F. Ebrahimzadeh, M.-C. Chung, S.-M. Guo, L.-S. Shieh, T.-J. Tsai, and L. Wang, “Optimal linear quadratic digital tracker for the discrete-time proper system with an unknown disturbance,” World Academy of Science, Engineering and Technology, International Journal of Computer, Electrical, Automation, Control and Information Engineering, vol. 10, no. 5, pp. 929-935, 2016.
[28] Tsai, J.S.-H., F. Ebrahimzadeh, Y.-Y. Lin, S.-M. Guo, L.-S. Shieh, and Y.-T. Juang, “An efficient tobust servo design for non-minimum phase discrete-time systems with unknown matched/mismatched input disturbances,” Automation, Control and Intelligent Systems, vol. 5, no. 2, pp. 14, 2017.
[29] Tsai, J.S.-H., H.-H. Wang, S.-M. Guo, L.-S. Shieh, and J.I. Canelon, “A case study on the universal compensation-improvement mechanism: A robust PID filter-shaped optimal PI tracker for systems with/without disturbances,” Journal of the Franklin Institute, vol. 355, no. 8, pp. 3583-3618, 2018.
[30] Tsai, J.S.H., W.T. Hsu, T.J. Tsai, K. Lin, S.M. Guo, and L.S. Shieh, “Realization of causal current output‐based optimal full/reducedorder observer and tracker for the linear sampled‐data system with a direct transmission term,” Optimal Control Applications and Methods, vol. 36, no. 6, pp. 729-749, 2015.
[31] Tsai, J.S.H., T.J. Su, J.-C. Cheng, Y.-Y. Lin, V.-N. Giap, S.M. Guo, and L.S. Shieh, “Robust observer-based optimal linear quadratic tracker for five-degree-of-freedom sampled-data active magnetic bearing system,” International Journal of Systems Science, vol. 49, no. 6, pp. 1273-1299, 2018.
[32] Wang, Y.-Y., P.M. Frank, and D.J. Clements, “The robustness properties of the linear quadratic regulators for singular systems,” IEEE Transactions on Automatic Control, vol. 38, no. 1, pp. 96-100, 1993.
[33] Wu, C.-Y., J.-H. Tsai, S.-M. Guo, L.-S. Shieh, J. Canelon, F. Ebrahimzadeh, and L. Wang, “A novel on-line observer/Kalman filter identification method and its application to input-constrained active fault-tolerant tracker design for unknown stochastic systems,” Journal of the Franklin Institute, vol. 352, no. 3, pp. 1119-1151, 2015.
校內:2023-07-27公開